
Introduction to statistical learning

L. Rouvière
laurent.rouviere@univ-rennes2.fr

October 2019

1

mailto:laurent.rouviere@univ-rennes2.fr

Outline

• 15 hours for this introduction.

• Materials: slides + exercises with R available here
https://lrouviere.github.io/intro-machine-learning/

• 4 parts:
1. Setting for statistical learning
2. Parametric vs non parametric approaches
3. Penalized regressions
4. Trees and random forests

• Prerequisites: basics in probability, statistics (law of large numbers,
estimation, bias, variance...) and data mining (linear model, logistic
model, linear discriminant analysis...).

2

Part I

Mathematical setting for SL

3

Outline

1. Motivations

2. Mathematical framework for statistical learning

3. Some criterion for regression and supervised classification

Regression

Binary classification

Scoring

4. Estimating the risk

5. Overfitting

6. Bibliography

4

Outline

1. Motivations

2. Mathematical framework for statistical learning

3. Some criterion for regression and supervised classification

Regression

Binary classification

Scoring

4. Estimating the risk

5. Overfitting

6. Bibliography

5

Statistical learning?

Many "definitions"

1. "... explores way of estimating functional dependency from a given
collection of data" [Vapnik, 2000].

2. "...vast set of tools for modelling and understanding complex data"
[James et al., 2015].

3. Learn a behavior from examples, let the data describes mechanisms of
a problem.

Statement

• Due to the digital revolution, we are faced with more and more
complex data.

• Usual algorithms are not always efficient for these kind of data.

• It is necessary to provide efficient algorithms which (automatically)
learn from data.

6

Statistical learning?

Many "definitions"

1. "... explores way of estimating functional dependency from a given
collection of data" [Vapnik, 2000].

2. "...vast set of tools for modelling and understanding complex data"
[James et al., 2015].

3. Learn a behavior from examples, let the data describes mechanisms of
a problem.

Statement

• Due to the digital revolution, we are faced with more and more
complex data.

• Usual algorithms are not always efficient for these kind of data.

• It is necessary to provide efficient algorithms which (automatically)
learn from data.

6

Statistical learning?

Many "definitions"

1. "... explores way of estimating functional dependency from a given
collection of data" [Vapnik, 2000].

2. "...vast set of tools for modelling and understanding complex data"
[James et al., 2015].

3. Learn a behavior from examples, let the data describes mechanisms of
a problem.

Statement

• Due to the digital revolution, we are faced with more and more
complex data.

• Usual algorithms are not always efficient for these kind of data.

• It is necessary to provide efficient algorithms which (automatically)
learn from data.

6

Statistical learning?

Many "definitions"

1. "... explores way of estimating functional dependency from a given
collection of data" [Vapnik, 2000].

2. "...vast set of tools for modelling and understanding complex data"
[James et al., 2015].

3. Learn a behavior from examples, let the data describes mechanisms of
a problem.

Statement

• Due to the digital revolution, we are faced with more and more
complex data.

• Usual algorithms are not always efficient for these kind of data.

• It is necessary to provide efficient algorithms which (automatically)
learn from data. 6

History - see [Besse and Laurent,]

Period Memory Order of magnitude

1940-70 Byte n = 30, p ≤ 10
1970 MB n = 500, p ≤ 10
1980 MB Machine Learning (computer science)
1990 GB Data-Mining
2000 TB p > n, statistical learning
2010 PB n and p large, cloud, cluster...
2013 ?? Big data
2017 ?? Artificial Intelligence

Computer resources =⇒

• Data Mining (patterns in large datasets, outliers...).

• Statistical learning (algorithms that can automatically learn from the
data) =⇒ data decides, not the user!

7

History - see [Besse and Laurent,]

Period Memory Order of magnitude

1940-70 Byte n = 30, p ≤ 10
1970 MB n = 500, p ≤ 10
1980 MB Machine Learning (computer science)
1990 GB Data-Mining
2000 TB p > n, statistical learning
2010 PB n and p large, cloud, cluster...
2013 ?? Big data
2017 ?? Artificial Intelligence

Computer resources =⇒

• Data Mining (patterns in large datasets, outliers...).

• Statistical learning (algorithms that can automatically learn from the
data) =⇒ data decides, not the user! 7

Statistical learning

• Find algorithms that can automatically learn from the data.

• It is not the user who choose both an algorithm and/or the
parameters, it is the data which decides.

• But...

the user should tell to the computer how to do that.

Conclusion
It is necessary to master the basics of machine learning algorithms.

8

Statistical learning

• Find algorithms that can automatically learn from the data.

• It is not the user who choose both an algorithm and/or the
parameters, it is the data which decides.

• But...the user should tell to the computer how to do that.

Conclusion
It is necessary to master the basics of machine learning algorithms.

8

Handwritten recognition

Statistical learning
Understand and learn a behavior from examples.

What is the number? 0, 1, 2...?

9

Handwritten recognition

Statistical learning
Understand and learn a behavior from examples.

What is the number? 0, 1, 2...?

9

Speech recognition

0.5

−0.5

1

−1

0.2

−0.2
0 1 0 1

−1

1

−1
0 110

0 1

1

0 1
−0.5

0.5
YES NO

AOSH

BOAT GOAT

10

Ozone prediction

• During one year, we have measured ozone concentration in a city (V4) ;

• Other meteorological variables are available (temperature, nebulosity,
wind...).

> head(Ozone)
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13

1 1 1 4 3 5480 8 20 NA NA 5000 -15 30.56 200
2 1 2 5 3 5660 6 NA 38 NA NA -14 NA 300
3 1 3 6 3 5710 4 28 40 NA 2693 -25 47.66 250
4 1 4 7 5 5700 3 37 45 NA 590 -24 55.04 100
5 1 5 1 5 5760 3 51 54 45.32 1450 25 57.02 60

Question
Can we explain and predict ozone concentration for tomorrow given
meteorological predictions?

11

Ozone prediction

• During one year, we have measured ozone concentration in a city (V4) ;

• Other meteorological variables are available (temperature, nebulosity,
wind...).

> head(Ozone)
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13

1 1 1 4 3 5480 8 20 NA NA 5000 -15 30.56 200
2 1 2 5 3 5660 6 NA 38 NA NA -14 NA 300
3 1 3 6 3 5710 4 28 40 NA 2693 -25 47.66 250
4 1 4 7 5 5700 3 37 45 NA 590 -24 55.04 100
5 1 5 1 5 5760 3 51 54 45.32 1450 25 57.02 60

Question
Can we explain and predict ozone concentration for tomorrow given
meteorological predictions?

11

Spam detection

• For 4 601 emails, we have identified 1813 spams.

• In addition to this class label there are 57 variables indicating the
frequency of some words and characters in the e-mail.

> spam[1:5,c(1:8,58)]
make address all num3d our over remove internet type

1 0.00 0.64 0.64 0 0.32 0.00 0.00 0.00 spam
2 0.21 0.28 0.50 0 0.14 0.28 0.21 0.07 spam
3 0.06 0.00 0.71 0 1.23 0.19 0.19 0.12 spam
4 0.00 0.00 0.00 0 0.63 0.00 0.31 0.63 spam
5 0.00 0.00 0.00 0 0.63 0.00 0.31 0.63 spam

Question
From these informations, can we automatically detect if a new e-mail is
(or not) a spam?

12

Spam detection

• For 4 601 emails, we have identified 1813 spams.

• In addition to this class label there are 57 variables indicating the
frequency of some words and characters in the e-mail.

> spam[1:5,c(1:8,58)]
make address all num3d our over remove internet type

1 0.00 0.64 0.64 0 0.32 0.00 0.00 0.00 spam
2 0.21 0.28 0.50 0 0.14 0.28 0.21 0.07 spam
3 0.06 0.00 0.71 0 1.23 0.19 0.19 0.12 spam
4 0.00 0.00 0.00 0 0.63 0.00 0.31 0.63 spam
5 0.00 0.00 0.00 0 0.63 0.00 0.31 0.63 spam

Question
From these informations, can we automatically detect if a new e-mail is
(or not) a spam?

12

Supervised vs unsupervised learning

• Supervised learning: explain/predict an output y ∈ Y from inputs
x ∈ X :

• Linear and logistic models;
• Linear discriminant analysis;
• Tree and random forests...

• Unsupervised learning: describe hidden structure from "unlabeled"
data (make groups):

• Hierarchical classifications;
• k-means algorithms;
• Mixture models...

Wide range of applications
finance, economy, marketing, biology, medecine...

13

Supervised vs unsupervised learning

• Supervised learning: explain/predict an output y ∈ Y from inputs
x ∈ X :

• Linear and logistic models;
• Linear discriminant analysis;
• Tree and random forests...

• Unsupervised learning: describe hidden structure from "unlabeled"
data (make groups):

• Hierarchical classifications;
• k-means algorithms;
• Mixture models...

Wide range of applications
finance, economy, marketing, biology, medecine...

13

Supervised vs unsupervised learning

• Supervised learning: explain/predict an output y ∈ Y from inputs
x ∈ X :

• Linear and logistic models;
• Linear discriminant analysis;
• Tree and random forests...

• Unsupervised learning: describe hidden structure from "unlabeled"
data (make groups):

• Hierarchical classifications;
• k-means algorithms;
• Mixture models...

Wide range of applications
finance, economy, marketing, biology, medecine...

13

Supervised vs unsupervised learning

• Supervised learning: explain/predict an output y ∈ Y from inputs
x ∈ X :

• Linear and logistic models;
• Linear discriminant analysis;
• Tree and random forests...

• Unsupervised learning: describe hidden structure from "unlabeled"
data (make groups):

• Hierarchical classifications;
• k-means algorithms;
• Mixture models...

Wide range of applications
finance, economy, marketing, biology, medecine...

13

Supervised vs unsupervised learning

• Supervised learning: explain/predict an output y ∈ Y from inputs
x ∈ X :

• Linear and logistic models;
• Linear discriminant analysis;
• Tree and random forests...

• Unsupervised learning: describe hidden structure from "unlabeled"
data (make groups):

• Hierarchical classifications;
• k-means algorithms;
• Mixture models...

Wide range of applications
finance, economy, marketing, biology, medecine...

13

Theory for statistical learning

References

• Reference book: [Vapnik, 2000]

14

The Elements of Statistical Learning [Hastie et al., 2009,
James et al., 2015]

• Available (with datasets, R commands...) at:

https://web.stanford.edu/~hastie/ElemStatLearn/
http://www-bcf.usc.edu/~gareth/ISL/

• This course is largely based on these two books.

15

https://web.stanford.edu/~hastie/ElemStatLearn/
http://www-bcf.usc.edu/~gareth/ISL/

Outline

1. Motivations

2. Mathematical framework for statistical learning

3. Some criterion for regression and supervised classification

Regression

Binary classification

Scoring

4. Estimating the risk

5. Overfitting

6. Bibliography

16

Regression vs supervised classification

• Input/output data: dn = (x1, y1), . . . , (xn, yn) where xi ∈ X are the
inputs yi ∈ Y the outputs.

Goal

1. Explain connections between inputs xi and outputs yi ;

2. Predict the output y for a new input x ∈ X .

Vocabulary

• When the output Y is continuous, we are faced with a regression
problem.

• When the output is categorical (Card(Y) finite), it is a supervised
classification problem.

17

Regression vs supervised classification

• Input/output data: dn = (x1, y1), . . . , (xn, yn) where xi ∈ X are the
inputs yi ∈ Y the outputs.

Goal

1. Explain connections between inputs xi and outputs yi ;

2. Predict the output y for a new input x ∈ X .

Vocabulary

• When the output Y is continuous, we are faced with a regression
problem.

• When the output is categorical (Card(Y) finite), it is a supervised
classification problem.

17

Examples

• Most of the presented problems are supervised learning problems: we
have to predict an output y by inputs x :

yi xi

Number picture Super. Class.
Word curve Super. Class.
Spam word frequencies Super. Class

O3 concentration meteo. variables. Regression

Remark

• One output yi .

• Wide range of input objects xi (continuous, categorical, curves,
pictures...).

18

Examples

• Most of the presented problems are supervised learning problems: we
have to predict an output y by inputs x :

yi xi

Number picture Super. Class.
Word curve Super. Class.
Spam word frequencies Super. Class

O3 concentration meteo. variables. Regression

Remark

• One output yi .

• Wide range of input objects xi (continuous, categorical, curves,
pictures...).

18

Mathematical framework (begin)

• Given observations dn = {(x1, y1), . . . , (xn, yn)} we want to
explain/predict outputs yi ∈ Y from inputs xi ∈ X .

• We have to find a machine (function) f : X → Y such that

f (xi) ≈ yi , i = 1, . . . , n.

• Requirement: a criterion to measure performances of any machine f .
• We use a cost function ` : Y × Y → R+ such that{

`(y , y ′) = 0 if y = y ′

`(y , y ′) > 0 if y 6= y ′.

Interpretation

`(y , y ′) measure the cost (error) between one prediction y ′ and one
observation y .

19

Mathematical framework (begin)

• Given observations dn = {(x1, y1), . . . , (xn, yn)} we want to
explain/predict outputs yi ∈ Y from inputs xi ∈ X .

• We have to find a machine (function) f : X → Y such that

f (xi) ≈ yi , i = 1, . . . , n.

• Requirement: a criterion to measure performances of any machine f .
• We use a cost function ` : Y × Y → R+ such that{

`(y , y ′) = 0 if y = y ′

`(y , y ′) > 0 if y 6= y ′.

Interpretation

`(y , y ′) measure the cost (error) between one prediction y ′ and one
observation y .

19

Mathematical framework (begin)

• Given observations dn = {(x1, y1), . . . , (xn, yn)} we want to
explain/predict outputs yi ∈ Y from inputs xi ∈ X .

• We have to find a machine (function) f : X → Y such that

f (xi) ≈ yi , i = 1, . . . , n.

• Requirement: a criterion to measure performances of any machine f .

• We use a cost function ` : Y × Y → R+ such that{
`(y , y ′) = 0 if y = y ′

`(y , y ′) > 0 if y 6= y ′.

Interpretation

`(y , y ′) measure the cost (error) between one prediction y ′ and one
observation y .

19

Mathematical framework (begin)

• Given observations dn = {(x1, y1), . . . , (xn, yn)} we want to
explain/predict outputs yi ∈ Y from inputs xi ∈ X .

• We have to find a machine (function) f : X → Y such that

f (xi) ≈ yi , i = 1, . . . , n.

• Requirement: a criterion to measure performances of any machine f .
• We use a cost function ` : Y × Y → R+ such that{

`(y , y ′) = 0 if y = y ′

`(y , y ′) > 0 if y 6= y ′.

Interpretation

`(y , y ′) measure the cost (error) between one prediction y ′ and one
observation y .

19

Mathematical framework (begin)

• Given observations dn = {(x1, y1), . . . , (xn, yn)} we want to
explain/predict outputs yi ∈ Y from inputs xi ∈ X .

• We have to find a machine (function) f : X → Y such that

f (xi) ≈ yi , i = 1, . . . , n.

• Requirement: a criterion to measure performances of any machine f .
• We use a cost function ` : Y × Y → R+ such that{

`(y , y ′) = 0 if y = y ′

`(y , y ′) > 0 if y 6= y ′.

Interpretation

`(y , y ′) measure the cost (error) between one prediction y ′ and one
observation y .

19

Statistical framework

• One observation = one random variable (X ,Y) with an unknown
probability distribution P.

• P represents both the possible values of (X ,Y) and the probabilities
attached to theses values.

Global performance of a machine f

• For a given cost function ` : Y × Y → R+, we can measure the global
(for all possible values of X and Y) performance of a machine
f : X → Y by

`(Y , f (X)).

• Technical problem: this function is random =⇒ (very) difficult to
minimize.

20

Statistical framework

• One observation = one random variable (X ,Y) with an unknown
probability distribution P.

• P represents both the possible values of (X ,Y) and the probabilities
attached to theses values.

Global performance of a machine f

• For a given cost function ` : Y × Y → R+, we can measure the global
(for all possible values of X and Y) performance of a machine
f : X → Y by

`(Y , f (X)).

• Technical problem: this function is random =⇒ (very) difficult to
minimize.

20

Statistical framework

• One observation = one random variable (X ,Y) with an unknown
probability distribution P.

• P represents both the possible values of (X ,Y) and the probabilities
attached to theses values.

Global performance of a machine f

• For a given cost function ` : Y × Y → R+, we can measure the global
(for all possible values of X and Y) performance of a machine
f : X → Y by

`(Y , f (X)).

• Technical problem: this function is random =⇒ (very) difficult to
minimize.

20

Statistical framework

• One observation = one random variable (X ,Y) with an unknown
probability distribution P.

• P represents both the possible values of (X ,Y) and the probabilities
attached to theses values.

Global performance of a machine f

• For a given cost function ` : Y × Y → R+, we can measure the global
(for all possible values of X and Y) performance of a machine
f : X → Y by

`(Y , f (X)).

• Technical problem: this function is random =⇒ (very) difficult to
minimize.

20

Optimal machine

Risk of a machine
We measure the performance of a machine f : X → Y by its risk

R(f) = E[`(Y , f (X))]

Theoretical problem

• For the cost function ` : Y × Y → R+, theoretical problem is to find

f ? ∈ argmin
f
R(f).

• Such a function f ? (if it exists) is called the optimal machine for the
cost function `.

21

Optimal machine

Risk of a machine
We measure the performance of a machine f : X → Y by its risk

R(f) = E[`(Y , f (X))]

Theoretical problem

• For the cost function ` : Y × Y → R+, theoretical problem is to find

f ? ∈ argmin
f
R(f).

• Such a function f ? (if it exists) is called the optimal machine for the
cost function `.

21

Optimal machine

Risk of a machine
We measure the performance of a machine f : X → Y by its risk

R(f) = E[`(Y , f (X))]

Theoretical problem

• For the cost function ` : Y × Y → R+, theoretical problem is to find

f ? ∈ argmin
f
R(f).

• Such a function f ? (if it exists) is called the optimal machine for the
cost function `.

21

In practice...

• The optimal machine f ? generally depends on the unknown probability
distribution P of (X ,Y)

=⇒ f ? is unknown in practice.

• Statistician’s job consists in finding a good estimate fn = fn(.,Dn) of
f ?=⇒ we have to find fn such that R(fn) ≈ R(f ?).

Definition

• We say that the estimate (fn)n is universally consistant if for any
distribution P

lim
n→∞

R(fn) = R(f ?).

• Interpretation: the risk of fn comes closer to the optimal risk as n
grows.

22

In practice...

• The optimal machine f ? generally depends on the unknown probability
distribution P of (X ,Y) =⇒ f ? is unknown in practice.

• Statistician’s job consists in finding a good estimate fn = fn(.,Dn) of
f ?=⇒ we have to find fn such that R(fn) ≈ R(f ?).

Definition

• We say that the estimate (fn)n is universally consistant if for any
distribution P

lim
n→∞

R(fn) = R(f ?).

• Interpretation: the risk of fn comes closer to the optimal risk as n
grows.

22

In practice...

• The optimal machine f ? generally depends on the unknown probability
distribution P of (X ,Y) =⇒ f ? is unknown in practice.

• Statistician’s job consists in finding a good estimate fn = fn(.,Dn) of
f ?

=⇒ we have to find fn such that R(fn) ≈ R(f ?).

Definition

• We say that the estimate (fn)n is universally consistant if for any
distribution P

lim
n→∞

R(fn) = R(f ?).

• Interpretation: the risk of fn comes closer to the optimal risk as n
grows.

22

In practice...

• The optimal machine f ? generally depends on the unknown probability
distribution P of (X ,Y) =⇒ f ? is unknown in practice.

• Statistician’s job consists in finding a good estimate fn = fn(.,Dn) of
f ?=⇒ we have to find fn such that R(fn) ≈ R(f ?).

Definition

• We say that the estimate (fn)n is universally consistant if for any
distribution P

lim
n→∞

R(fn) = R(f ?).

• Interpretation: the risk of fn comes closer to the optimal risk as n
grows.

22

In practice...

• The optimal machine f ? generally depends on the unknown probability
distribution P of (X ,Y) =⇒ f ? is unknown in practice.

• Statistician’s job consists in finding a good estimate fn = fn(.,Dn) of
f ?=⇒ we have to find fn such that R(fn) ≈ R(f ?).

Definition

• We say that the estimate (fn)n is universally consistant if for any
distribution P

lim
n→∞

R(fn) = R(f ?).

• Interpretation: the risk of fn comes closer to the optimal risk as n
grows.

22

In practice...

• The optimal machine f ? generally depends on the unknown probability
distribution P of (X ,Y) =⇒ f ? is unknown in practice.

• Statistician’s job consists in finding a good estimate fn = fn(.,Dn) of
f ?=⇒ we have to find fn such that R(fn) ≈ R(f ?).

Definition

• We say that the estimate (fn)n is universally consistant if for any
distribution P

lim
n→∞

R(fn) = R(f ?).

• Interpretation: the risk of fn comes closer to the optimal risk as n
grows.

22

Choice of the cost function `

• The proposed mathematical framework implies that a machine is
performant with respect to a criterion (represented by the cost
function `).

• It means that a machine f could be efficient for a cost function `1
(R1(f) small) but not for another cost function `2 (R2(f) large).

Important conclusion
In practice, it is crucial to choose a relevant cost function for the problem
we are faced.

23

Choice of the cost function `

• The proposed mathematical framework implies that a machine is
performant with respect to a criterion (represented by the cost
function `).

• It means that a machine f could be efficient for a cost function `1
(R1(f) small) but not for another cost function `2 (R2(f) large).

Important conclusion
In practice, it is crucial to choose a relevant cost function for the problem
we are faced.

23

Choice of the cost function `

• The proposed mathematical framework implies that a machine is
performant with respect to a criterion (represented by the cost
function `).

• It means that a machine f could be efficient for a cost function `1
(R1(f) small) but not for another cost function `2 (R2(f) large).

Important conclusion
In practice, it is crucial to choose a relevant cost function for the problem
we are faced.

23

Outline

1. Motivations

2. Mathematical framework for statistical learning

3. Some criterion for regression and supervised classification

Regression

Binary classification

Scoring

4. Estimating the risk

5. Overfitting

6. Bibliography

24

Outline

1. Motivations

2. Mathematical framework for statistical learning

3. Some criterion for regression and supervised classification

Regression

Binary classification

Scoring

4. Estimating the risk

5. Overfitting

6. Bibliography

25

Quadratic risk

• In regression (Y = R), quadratic cost is often used. It is defined by

` : R× R→ R+

(y , y ′) 7→ (y − y ′)2

• Quadratic risk for a machine or regression function f : X → R is thus
defined by

R(f) = E((Y − f (X))2).

• The winner
f ?(x) = E[Y |X = x]

is called the optimal regression function.
• Indeed, ∀f : X → R, we have

R(f ?) = E[(Y − f ?(X))2] ≤ E[(Y − f (X))2] = R(f).

26

Quadratic risk

• In regression (Y = R), quadratic cost is often used. It is defined by

` : R× R→ R+

(y , y ′) 7→ (y − y ′)2

• Quadratic risk for a machine or regression function f : X → R is thus
defined by

R(f) = E((Y − f (X))2).

• The winner
f ?(x) = E[Y |X = x]

is called the optimal regression function.
• Indeed, ∀f : X → R, we have

R(f ?) = E[(Y − f ?(X))2] ≤ E[(Y − f (X))2] = R(f).

26

Quadratic risk

• In regression (Y = R), quadratic cost is often used. It is defined by

` : R× R→ R+

(y , y ′) 7→ (y − y ′)2

• Quadratic risk for a machine or regression function f : X → R is thus
defined by

R(f) = E((Y − f (X))2).

• The winner
f ?(x) = E[Y |X = x]

is called the optimal regression function.
• Indeed, ∀f : X → R, we have

R(f ?) = E[(Y − f ?(X))2] ≤ E[(Y − f (X))2] = R(f).

26

Quadratic risk

• In regression (Y = R), quadratic cost is often used. It is defined by

` : R× R→ R+

(y , y ′) 7→ (y − y ′)2

• Quadratic risk for a machine or regression function f : X → R is thus
defined by

R(f) = E((Y − f (X))2).

• The winner
f ?(x) = E[Y |X = x]

is called the optimal regression function.

• Indeed, ∀f : X → R, we have

R(f ?) = E[(Y − f ?(X))2] ≤ E[(Y − f (X))2] = R(f).

26

Quadratic risk

• In regression (Y = R), quadratic cost is often used. It is defined by

` : R× R→ R+

(y , y ′) 7→ (y − y ′)2

• Quadratic risk for a machine or regression function f : X → R is thus
defined by

R(f) = E((Y − f (X))2).

• The winner
f ?(x) = E[Y |X = x]

is called the optimal regression function.
• Indeed, ∀f : X → R, we have

R(f ?) = E[(Y − f ?(X))2] ≤ E[(Y − f (X))2] = R(f). 26

Universal consistency

• Problem: f ? is unknown in practice. We have ton find an estimate
fn(x) = fn(x ,Dn) such that fn(x) ≈ f ?(x).

Definition
fn is universally consistant if

lim
n→+∞

R(fn) = R(f ?)

for any distribution of (X ,Y).

27

Universal consistency

• Problem: f ? is unknown in practice. We have ton find an estimate
fn(x) = fn(x ,Dn) such that fn(x) ≈ f ?(x).

Definition
fn is universally consistant if

lim
n→+∞

R(fn) = R(f ?)

for any distribution of (X ,Y).

27

Outline

1. Motivations

2. Mathematical framework for statistical learning

3. Some criterion for regression and supervised classification

Regression

Binary classification

Scoring

4. Estimating the risk

5. Overfitting

6. Bibliography

28

Error probability

• Binary classification means that output can only take 2 values
(Y = {−1, 1}). In this case, we often use the 0-1 loss function:

` : {−1, 1} × {−1, 1} → R+

(y , y ′) 7→ 1y 6=y ′

• The risk for a classification rule f : X → {−1, 1} is given by

R(f) = E(1f (X)6=Y) = P(f (X) 6= Y).

• The winner (called the Bayes rule) is

f ?(x) =

{
−1 if P(Y = −1|X = x) ≥ P(Y = 1|X = x)

1 otherwise.

• For any classification rule f ,

R(f ?) = P(f ?(X) 6= Y) ≤ P(f (X) 6= Y) = R(f).

29

Error probability

• Binary classification means that output can only take 2 values
(Y = {−1, 1}). In this case, we often use the 0-1 loss function:

` : {−1, 1} × {−1, 1} → R+

(y , y ′) 7→ 1y 6=y ′

• The risk for a classification rule f : X → {−1, 1} is given by

R(f) = E(1f (X)6=Y) = P(f (X) 6= Y).

• The winner (called the Bayes rule) is

f ?(x) =

{
−1 if P(Y = −1|X = x) ≥ P(Y = 1|X = x)

1 otherwise.

• For any classification rule f ,

R(f ?) = P(f ?(X) 6= Y) ≤ P(f (X) 6= Y) = R(f).

29

Error probability

• Binary classification means that output can only take 2 values
(Y = {−1, 1}). In this case, we often use the 0-1 loss function:

` : {−1, 1} × {−1, 1} → R+

(y , y ′) 7→ 1y 6=y ′

• The risk for a classification rule f : X → {−1, 1} is given by

R(f) = E(1f (X)6=Y) = P(f (X) 6= Y).

• The winner (called the Bayes rule) is

f ?(x) =

{
−1 if P(Y = −1|X = x) ≥ P(Y = 1|X = x)

1 otherwise.

• For any classification rule f ,

R(f ?) = P(f ?(X) 6= Y) ≤ P(f (X) 6= Y) = R(f).

29

Error probability

• Binary classification means that output can only take 2 values
(Y = {−1, 1}). In this case, we often use the 0-1 loss function:

` : {−1, 1} × {−1, 1} → R+

(y , y ′) 7→ 1y 6=y ′

• The risk for a classification rule f : X → {−1, 1} is given by

R(f) = E(1f (X)6=Y) = P(f (X) 6= Y).

• The winner (called the Bayes rule) is

f ?(x) =

{
−1 if P(Y = −1|X = x) ≥ P(Y = 1|X = x)

1 otherwise.

• For any classification rule f ,

R(f ?) = P(f ?(X) 6= Y) ≤ P(f (X) 6= Y) = R(f).

29

Error probability

• Binary classification means that output can only take 2 values
(Y = {−1, 1}). In this case, we often use the 0-1 loss function:

` : {−1, 1} × {−1, 1} → R+

(y , y ′) 7→ 1y 6=y ′

• The risk for a classification rule f : X → {−1, 1} is given by

R(f) = E(1f (X)6=Y) = P(f (X) 6= Y).

• The winner (called the Bayes rule) is

f ?(x) =

{
−1 if P(Y = −1|X = x) ≥ P(Y = 1|X = x)

1 otherwise.

• For any classification rule f ,

R(f ?) = P(f ?(X) 6= Y) ≤ P(f (X) 6= Y) = R(f). 29

Universal consistency

• Problem: f ? is unknown in practice. We have to find fn(x) = fn(x ,Dn)

such that fn(x) ≈ f ?(x).

Definition

(fn)n is universally consistent if

lim
n→∞

R(fn) = R(f ?)

for any distribution of (X ,Y).

=⇒ See Exercise 1 - IML0.

30

Universal consistency

• Problem: f ? is unknown in practice. We have to find fn(x) = fn(x ,Dn)

such that fn(x) ≈ f ?(x).

Definition

(fn)n is universally consistent if

lim
n→∞

R(fn) = R(f ?)

for any distribution of (X ,Y).

=⇒ See Exercise 1 - IML0.

30

Universal consistency

• Problem: f ? is unknown in practice. We have to find fn(x) = fn(x ,Dn)

such that fn(x) ≈ f ?(x).

Definition

(fn)n is universally consistent if

lim
n→∞

R(fn) = R(f ?)

for any distribution of (X ,Y).

=⇒ See Exercise 1 - IML0.

30

Outline

1. Motivations

2. Mathematical framework for statistical learning

3. Some criterion for regression and supervised classification

Regression

Binary classification

Scoring

4. Estimating the risk

5. Overfitting

6. Bibliography

31

Scoring function

• Always in binary classification (Y = {−1, 1}).

• But... instead of a classification rule f : X → {−1, 1}, we want to find
a function S : X → R such that

S(x)

P(Y = 1) small P(Y = 1) large

• Such a function is a score function: instead of predicting the label y of
a new x ∈ X , we provide a score S(x) with
• large values if we think that x is 1;
• small values if we think that x is -1.

32

Scoring function

• Always in binary classification (Y = {−1, 1}).

• But... instead of a classification rule f : X → {−1, 1}, we want to find
a function S : X → R such that

S(x)

P(Y = 1) small P(Y = 1) large

• Such a function is a score function: instead of predicting the label y of
a new x ∈ X , we provide a score S(x) with
• large values if we think that x is 1;
• small values if we think that x is -1.

32

Perfect and random scores

● ● ● ●●● ● ● ●●● ●●● ● ●● ●●● ●●● ●●●●● ●● ● ●● ●●● ●● ● ●● ●● ● ● ●● ● ●●

●● ● ●● ●● ● ●●● ●●● ● ●● ●● ● ●●● ●●●●● ●● ● ●● ●●●●● ● ●● ●● ● ● ●● ● ●●

●●●● ●●● ●● ● ●●● ●● ●● ●● ● ● ● ● ●● ● ●●●● ●●●● ●● ●●● ● ●● ●● ●●● ●● ●

Perfect

random

S

0.00 0.25 0.50 0.75 1.00

Y

●

●

0

1

Definition

• Perfect score: S is perfect if there exists s? such that

P(Y = 1|S(X) ≥ s?) = 1 and P(Y = −1|S(X) < s?) = 1.

• Random score: S is random if S(X) and Y are independents.

33

Perfect and random scores

● ● ● ●●● ● ● ●●● ●●● ● ●● ●●● ●●● ●●●●● ●● ● ●● ●●● ●● ● ●● ●● ● ● ●● ● ●●

●● ● ●● ●● ● ●●● ●●● ● ●● ●● ● ●●● ●●●●● ●● ● ●● ●●●●● ● ●● ●● ● ● ●● ● ●●

●●●● ●●● ●● ● ●●● ●● ●● ●● ● ● ● ● ●● ● ●●●● ●●●● ●● ●●● ● ●● ●● ●●● ●● ●

Perfect

random

S

0.00 0.25 0.50 0.75 1.00

Y

●

●

0

1

Definition

• Perfect score: S is perfect if there exists s? such that

P(Y = 1|S(X) ≥ s?) = 1 and P(Y = −1|S(X) < s?) = 1.

• Random score: S is random if S(X) and Y are independents.

33

Perfect and random scores

● ● ● ●●● ● ● ●●● ●●● ● ●● ●●● ●●● ●●●●● ●● ● ●● ●●● ●● ● ●● ●● ● ● ●● ● ●●

●● ● ●● ●● ● ●●● ●●● ● ●● ●● ● ●●● ●●●●● ●● ● ●● ●●●●● ● ●● ●● ● ● ●● ● ●●

●●●● ●●● ●● ● ●●● ●● ●● ●● ● ● ● ● ●● ● ●●●● ●●●● ●● ●●● ● ●● ●● ●●● ●● ●

Perfect

random

S

0.00 0.25 0.50 0.75 1.00

Y

●

●

0

1

Definition

• Perfect score: S is perfect if there exists s? such that

P(Y = 1|S(X) ≥ s?) = 1 and P(Y = −1|S(X) < s?) = 1.

• Random score: S is random if S(X) and Y are independents.

33

Link between a score and a classification rule

• For a given score S and a threshold s, we obtain a classification rule:

fs(x) =

{
1 if S(x) ≥ s

−1 otherwise.

• We have

fs(X) = −1 fs(X) = 1

Y = −1 OK E1

Y = 1 E2 OK

• For any threshlod s, we can define 2 errors:

α(s) = P(fs(X) = 1|Y = −1) = P(S(X) ≥ s|Y = −1)

and

β(s) = P(fs(X) = −1|Y = 1) = P(S(X) < s|Y = 1).

34

Link between a score and a classification rule

• For a given score S and a threshold s, we obtain a classification rule:

fs(x) =

{
1 if S(x) ≥ s

−1 otherwise.

• We have

fs(X) = −1 fs(X) = 1

Y = −1 OK E1

Y = 1 E2 OK

• For any threshlod s, we can define 2 errors:

α(s) = P(fs(X) = 1|Y = −1) = P(S(X) ≥ s|Y = −1)

and

β(s) = P(fs(X) = −1|Y = 1) = P(S(X) < s|Y = 1).

34

We can also define

• Specificity: sp(s) = P(S(X) < s|Y = −1) = 1− α(s);

• Sensibility: se(s) = P(S(X) ≥ s|Y = 1) = 1− β(s).

Performance of a score

Visualize errors α(s) and β(s) on a same graph for all thresholds s.

35

We can also define

• Specificity: sp(s) = P(S(X) < s|Y = −1) = 1− α(s);

• Sensibility: se(s) = P(S(X) ≥ s|Y = 1) = 1− β(s).

Performance of a score

Visualize errors α(s) and β(s) on a same graph for all thresholds s.

35

ROC curve

• Idea: define a 2-dimensionnel graph to represent errors α(s) and β(s)

for all values of s.

Definition
The ROC curve of a score S is the parametrized curve defined by{

x(s) = α(s) = 1− sp(s) = P(S(X) > s|Y = −1)

y(s) = 1− β(s) = se(s) = P(S(X) ≥ s|Y = 1)

Remark

• For any score S : x(−∞) = y(−∞) = 1 and x(+∞) = y(+∞) = 0.

• For a perfect score: x(s?) = 0 and y(s?) = 1.

• For a random score: x(s) = y(s) ∀s.

36

ROC curve

• Idea: define a 2-dimensionnel graph to represent errors α(s) and β(s)

for all values of s.

Definition
The ROC curve of a score S is the parametrized curve defined by{

x(s) = α(s) = 1− sp(s) = P(S(X) > s|Y = −1)

y(s) = 1− β(s) = se(s) = P(S(X) ≥ s|Y = 1)

Remark

• For any score S : x(−∞) = y(−∞) = 1 and x(+∞) = y(+∞) = 0.

• For a perfect score: x(s?) = 0 and y(s?) = 1.

• For a random score: x(s) = y(s) ∀s.

36

ROC curve

• Idea: define a 2-dimensionnel graph to represent errors α(s) and β(s)

for all values of s.

Definition
The ROC curve of a score S is the parametrized curve defined by{

x(s) = α(s) = 1− sp(s) = P(S(X) > s|Y = −1)

y(s) = 1− β(s) = se(s) = P(S(X) ≥ s|Y = 1)

Remark

• For any score S : x(−∞) = y(−∞) = 1 and x(+∞) = y(+∞) = 0.

• For a perfect score: x(s?) = 0 and y(s?) = 1.

• For a random score: x(s) = y(s) ∀s.

36

ROC curve

• Idea: define a 2-dimensionnel graph to represent errors α(s) and β(s)

for all values of s.

Definition
The ROC curve of a score S is the parametrized curve defined by{

x(s) = α(s) = 1− sp(s) = P(S(X) > s|Y = −1)

y(s) = 1− β(s) = se(s) = P(S(X) ≥ s|Y = 1)

Remark

• For any score S : x(−∞) = y(−∞) = 1 and x(+∞) = y(+∞) = 0.

• For a perfect score: x(s?) = 0 and y(s?) = 1.

• For a random score: x(s) = y(s) ∀s.

36

ROC curve

• Idea: define a 2-dimensionnel graph to represent errors α(s) and β(s)

for all values of s.

Definition
The ROC curve of a score S is the parametrized curve defined by{

x(s) = α(s) = 1− sp(s) = P(S(X) > s|Y = −1)

y(s) = 1− β(s) = se(s) = P(S(X) ≥ s|Y = 1)

Remark

• For any score S : x(−∞) = y(−∞) = 1 and x(+∞) = y(+∞) = 0.

• For a perfect score: x(s?) = 0 and y(s?) = 1.

• For a random score: x(s) = y(s) ∀s.

36

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

false_positive_fraction

tru
e_

po
sit

ive
_f

ra
ct

io
n

Scores

Perfect

random

S1

S2

Interpretation
We measure performance of a score by its ability to approach the line
y = 1 as fast as possible.

37

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

false_positive_fraction

tru
e_

po
sit

ive
_f

ra
ct

io
n

Scores

Perfect

random

S1

S2

Interpretation
We measure performance of a score by its ability to approach the line
y = 1 as fast as possible.

37

AUC

Definition

• Area Under ROC for a score S , denoted AUC (S) is often used to
measure performance of a S .

• Perfect score: AUC (S) = 1. Random score: AUC (S) = 1/2.

Proposition

• Let (X1,Y1) et (X2,Y2) be 2 i.i.d. observations. Then

AUC (S) = P(S(X1) ≥ S(X2)|(Y1,Y2) = (1,−1)).

Conclusion

AUC (S) measures the probability that S correctly orders two observations
with different labels.

38

AUC

Definition

• Area Under ROC for a score S , denoted AUC (S) is often used to
measure performance of a S .

• Perfect score: AUC (S) = 1. Random score: AUC (S) = 1/2.

Proposition

• Let (X1,Y1) et (X2,Y2) be 2 i.i.d. observations. Then

AUC (S) = P(S(X1) ≥ S(X2)|(Y1,Y2) = (1,−1)).

Conclusion

AUC (S) measures the probability that S correctly orders two observations
with different labels.

38

AUC

Definition

• Area Under ROC for a score S , denoted AUC (S) is often used to
measure performance of a S .

• Perfect score: AUC (S) = 1. Random score: AUC (S) = 1/2.

Proposition

• Let (X1,Y1) et (X2,Y2) be 2 i.i.d. observations. Then

AUC (S) = P(S(X1) ≥ S(X2)|(Y1,Y2) = (1,−1)).

Conclusion

AUC (S) measures the probability that S correctly orders two observations
with different labels.

38

Example

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

false_positive_fraction

tru
e_

po
sit

ive
_f

ra
cti

on

Scores

Perfect

random

S1

S2

> df1 %>% group_by(Scores) %>% summarize(auc(D,M))
1 Perfect 1.0000000
2 random 0.5000000
3 S1 0.8999824
4 S2 0.6957177

39

Example

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

false_positive_fraction

tru
e_

po
sit

ive
_f

ra
cti

on

Scores

Perfect

random

S1

S2

> df1 %>% group_by(Scores) %>% summarize(auc(D,M))
1 Perfect 1.0000000
2 random 0.5000000
3 S1 0.8999824
4 S2 0.6957177

39

Optimal score

• AUC (S) can be seen as a cost function for a score S ;

• Question: is there an optimal score S? for this cost function?

Theorem ([Clémençon et al., 2008])

Let S?(x) = P(Y = 1|X = x), then for any score S we have

AUC (S?) ≥ AUC (S).

Consequence

We have to find a "good" estimate Sn(x) = Sn(x ,Dn) of

S?(x) = P(Y = 1|X = x).

40

Optimal score

• AUC (S) can be seen as a cost function for a score S ;

• Question: is there an optimal score S? for this cost function?

Theorem ([Clémençon et al., 2008])

Let S?(x) = P(Y = 1|X = x), then for any score S we have

AUC (S?) ≥ AUC (S).

Consequence

We have to find a "good" estimate Sn(x) = Sn(x ,Dn) of

S?(x) = P(Y = 1|X = x).

40

Optimal score

• AUC (S) can be seen as a cost function for a score S ;

• Question: is there an optimal score S? for this cost function?

Theorem ([Clémençon et al., 2008])

Let S?(x) = P(Y = 1|X = x), then for any score S we have

AUC (S?) ≥ AUC (S).

Consequence

We have to find a "good" estimate Sn(x) = Sn(x ,Dn) of

S?(x) = P(Y = 1|X = x).

40

Summary

Cost `(y , f (x)) Risk E[`(Y , f (X))] Winner f ?

Regression (y − f (x))2 E[Y − f (X)]2 E[Y |X = x]

Binary class. 1y 6=f (x) P(Y 6= f (X)) Bayes rule

Scoring AUC (S) P(Y = 1|X = x)

41

Outline

1. Motivations

2. Mathematical framework for statistical learning

3. Some criterion for regression and supervised classification

Regression

Binary classification

Scoring

4. Estimating the risk

5. Overfitting

6. Bibliography

42

Reminder

• n observations (X1,Y1), . . . , (Xn,Yn) i.i.d in X × Y.

Goal

Given a cost function ` : Y × Y → R+, we search a machine
fn(x) = fn(x ,Dn) closed to the optimal machine f ? defined by

f ? ∈ argmin
f
R(f)

where R(f) = E[`(Y , f (X))].

Question

Given a machine fn, what can we say about its risk R(fn)?

43

Reminder

• n observations (X1,Y1), . . . , (Xn,Yn) i.i.d in X × Y.

Goal

Given a cost function ` : Y × Y → R+, we search a machine
fn(x) = fn(x ,Dn) closed to the optimal machine f ? defined by

f ? ∈ argmin
f
R(f)

where R(f) = E[`(Y , f (X))].

Question

Given a machine fn, what can we say about its risk R(fn)?

43

Empirical risk

• Since the distribution of (X ,Y) is unknown, we can’t compute
R(fn) = E[`(Y , fn(X))].

• First idea: R(fn) is an expectation, estimate it by its empirical version
(law of large numbers)

Rn(fn) =
1
n

n∑
i=1

`(Yi , fn(Xi)).

Problem

• Dn has already been used to construct the machine fn =⇒ LLN does
not apply!

• Consequence: Rn(fn) generally underestimates R(fn).

One solution
Cross validation or bootstrap approaches.

44

Empirical risk

• Since the distribution of (X ,Y) is unknown, we can’t compute
R(fn) = E[`(Y , fn(X))].

• First idea: R(fn) is an expectation, estimate it by its empirical version
(law of large numbers)

Rn(fn) =
1
n

n∑
i=1

`(Yi , fn(Xi)).

Problem

• Dn has already been used to construct the machine fn =⇒ LLN does
not apply!

• Consequence: Rn(fn) generally underestimates R(fn).

One solution
Cross validation or bootstrap approaches.

44

Empirical risk

• Since the distribution of (X ,Y) is unknown, we can’t compute
R(fn) = E[`(Y , fn(X))].

• First idea: R(fn) is an expectation, estimate it by its empirical version
(law of large numbers)

Rn(fn) =
1
n

n∑
i=1

`(Yi , fn(Xi)).

Problem

• Dn has already been used to construct the machine fn =⇒ LLN does
not apply!

• Consequence: Rn(fn) generally underestimates R(fn).

One solution
Cross validation or bootstrap approaches.

44

Empirical risk

• Since the distribution of (X ,Y) is unknown, we can’t compute
R(fn) = E[`(Y , fn(X))].

• First idea: R(fn) is an expectation, estimate it by its empirical version
(law of large numbers)

Rn(fn) =
1
n

n∑
i=1

`(Yi , fn(Xi)).

Problem

• Dn has already been used to construct the machine fn =⇒ LLN does
not apply!

• Consequence: Rn(fn) generally underestimates R(fn).

One solution
Cross validation or bootstrap approaches.

44

Validation hold hout

• The simplest approach.
• It consists in splitting the data Dn into:

1. a learning or training set Dn,train used to learn a machine fn ;
2. a validation or test set Dn,test to estimate the risk of fn.

Algorithm

Inputs. Dn: data, {T ,V}: a partition of {1, . . . , n}.

1. Learn the machine with Dn,train = {(Xi ,Yi) : i ∈ T } =⇒ fn,train ;

2. Compute R̂n(fn) = 1
|V|
∑

i∈V `(Yi , fn,train(Xi)).

Comments
ntrain and ntest should be large enough to

1. fit fn,train;

2. estimate its risk R(fn,train).

45

Validation hold hout

• The simplest approach.
• It consists in splitting the data Dn into:

1. a learning or training set Dn,train used to learn a machine fn ;
2. a validation or test set Dn,test to estimate the risk of fn.

Algorithm

Inputs. Dn: data, {T ,V}: a partition of {1, . . . , n}.

1. Learn the machine with Dn,train = {(Xi ,Yi) : i ∈ T } =⇒ fn,train ;

2. Compute R̂n(fn) = 1
|V|
∑

i∈V `(Yi , fn,train(Xi)).

Comments
ntrain and ntest should be large enough to

1. fit fn,train;

2. estimate its risk R(fn,train).

45

Validation hold hout

• The simplest approach.
• It consists in splitting the data Dn into:

1. a learning or training set Dn,train used to learn a machine fn ;
2. a validation or test set Dn,test to estimate the risk of fn.

Algorithm

Inputs. Dn: data, {T ,V}: a partition of {1, . . . , n}.

1. Learn the machine with Dn,train = {(Xi ,Yi) : i ∈ T } =⇒ fn,train ;

2. Compute R̂n(fn) = 1
|V|
∑

i∈V `(Yi , fn,train(Xi)).

Comments
ntrain and ntest should be large enough to

1. fit fn,train;

2. estimate its risk R(fn,train).
45

K fold cross-validation

• Idea: repeat validation hold out algorithm on each element of a data
partition.

Algorithme - CV
Inputs. Dn: data, K an integer ;

1. Define a random partition {I1, . . . , IK} of {1, . . . , n} ;
2. For k = 1, . . . ,K

2.1 Itrain = {1, . . . , n}\Ik and Itest = Ik ;
2.2 Learn the machine with Dn,app = {(Xi ,Yi) : i ∈ Iapp} =⇒ fn,k ;
2.3 Let fn(Xi) = fn,k(Xi) for i ∈ Itest ;

3. Output

R̂n(fn) =
1
n

n∑
i=1

`(Yi , fn(Xi)).

46

Comments

• More useful than validation hold out when n is small.
• More accurate but more time consuming.
• K has to be chosen by the user (we often set K = 10).

Leave one out

• When K = n, we obtain leave one out cross validation.

• Risk is estimated by

R̂n(fn) =
1
n

n∑
i=1

`(Yi , f
i
n (Xi))

where f in stands for the machine defined on Dn after deleted the ith
observation.

• Exercises 1-3, IML1.
47

Outline

1. Motivations

2. Mathematical framework for statistical learning

3. Some criterion for regression and supervised classification

Regression

Binary classification

Scoring

4. Estimating the risk

5. Overfitting

6. Bibliography

48

• Most of statistical learning algorithms depends on parameters (λ).

Examples

• number of input variables in linear and logistic models.

• penalty parameters for lasso and ridge regressions.

• depth for tree algorithms.

• number of nearest neighbors.

• bandwidth of kernel regression estimators.

• number of iterations for boosting algorithms.

• ...

• The choice of theses parameters reveals crucial for the performance of
the machine.

49

• Most of statistical learning algorithms depends on parameters (λ).

Examples

• number of input variables in linear and logistic models.

• penalty parameters for lasso and ridge regressions.

• depth for tree algorithms.

• number of nearest neighbors.

• bandwidth of kernel regression estimators.

• number of iterations for boosting algorithms.

• ...

• The choice of theses parameters reveals crucial for the performance of
the machine.

49

• Most of statistical learning algorithms depends on parameters (λ).

Examples

• number of input variables in linear and logistic models.

• penalty parameters for lasso and ridge regressions.

• depth for tree algorithms.

• number of nearest neighbors.

• bandwidth of kernel regression estimators.

• number of iterations for boosting algorithms.

• ...

• The choice of theses parameters reveals crucial for the performance of
the machine.

49

• Parameter λ often measures model complexity:

Model complexity

• λ small =⇒ restrictive model =⇒ bad fitting =⇒ bias ↗, variance ↘
• λ large =⇒ flexible (complex) model =⇒ overfitting =⇒ bias ↘,

variance ↗

Overfitting

Good fitting on the training data (i.e. f (Xi) = Yi) but poor predictive
performances on new individuals.

50

• Parameter λ often measures model complexity:

Model complexity

• λ small =⇒ restrictive model =⇒ bad fitting =⇒ bias ↗, variance ↘

• λ large =⇒ flexible (complex) model =⇒ overfitting =⇒ bias ↘,
variance ↗

Overfitting

Good fitting on the training data (i.e. f (Xi) = Yi) but poor predictive
performances on new individuals.

50

• Parameter λ often measures model complexity:

Model complexity

• λ small =⇒ restrictive model =⇒ bad fitting =⇒ bias ↗, variance ↘
• λ large =⇒ flexible (complex) model =⇒ overfitting =⇒ bias ↘,

variance ↗

Overfitting

Good fitting on the training data (i.e. f (Xi) = Yi) but poor predictive
performances on new individuals.

50

• Parameter λ often measures model complexity:

Model complexity

• λ small =⇒ restrictive model =⇒ bad fitting =⇒ bias ↗, variance ↘
• λ large =⇒ flexible (complex) model =⇒ overfitting =⇒ bias ↘,

variance ↗

Overfitting

Good fitting on the training data (i.e. f (Xi) = Yi) but poor predictive
performances on new individuals.

50

Test error

OVERFITTING

Train error

Complexity (λ)

51

Overfitting for regression

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.5

−1.0

−0.5

0.0

0.5

1.0

−4 0 4

X

Y

52

Overfitting for regression

−1.5

−1.0

−0.5

0.0

0.5

1.0

−4 0 4

x

y

Estimate

Over

Good

Under

52

Overfitting for supervised classification

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X1

X2

Y
●

●

0

1

53

Overfitting for supervised classification

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X1

X2

label

0

1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X1

X2

label

0

1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X1

X2

label

0

1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X1

X2
label

1

• Run application overfitting.app. 53

Outline

1. Motivations

2. Mathematical framework for statistical learning

3. Some criterion for regression and supervised classification

Regression

Binary classification

Scoring

4. Estimating the risk

5. Overfitting

6. Bibliography

54

References i

Besse, P. and Laurent, B.
Apprentissage Statistique modeélisation, preévision, data
mining.
INSA - Toulouse.
http://www.math.univ-toulouse.fr/~besse/pub/Appren_stat.pdf.

Bousquet, O., Boucheron, S., and Lugosi, G. (2003).
Introduction to Statistical Learning Theory, chapter Advanced
Lectures on Machine Learning.
Springer.

Clémençon, S., Lugosi, G., and Vayatis, N. (2008).
Ranking and empirical minimization of u-statistics.
The Annals of Statistics, 36(2):844–874.

55

http://www.math.univ-toulouse.fr/~besse/pub/Appren_stat.pdf

References ii

Hastie, T., Tibshirani, R., and Friedman, J. (2009).
The Elements of Statistical Learning: Data Mining, Inference,
and Prediction.
Springer, second edition.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2015).
The Elements of Statistical Learning: Data Mining, Inference,
and Prediction.
Springer.

Vapnik, V. (2000).
The Nature of Statistical Learning Theory.
Springer, second edition.

56

Part II

Parametric versus nonparametric
approaches

57

Outline
1. Some parametric methods

Linear and logistic models

Linear discriminant analysis

Just one explanatory variable

LDA: general case

2. Some nonparametric methods

Kernel and nearest neighbors methods

The curse of dimensionality
3. Empirical risk minimization

Setting

Caret package
4. Bibliography

58

Mathematical framework

• n i.i.d observations (X1,Y1), . . . , (Xn,Yn) in X × Y.
• ` : Y × Y → R+ cost function.

Problem

Find a good estimate fn(.) = fn(.,Dn) of

f ? ∈ argmin
f
R(f) = E[`(Y , f (X))].

Model

• Modelize remains to fix a class of functions F and to assume that
f ? ∈ F .
• Modelize = make an assumption.

59

Mathematical framework

• n i.i.d observations (X1,Y1), . . . , (Xn,Yn) in X × Y.
• ` : Y × Y → R+ cost function.

Problem

Find a good estimate fn(.) = fn(.,Dn) of

f ? ∈ argmin
f
R(f) = E[`(Y , f (X))].

Model

• Modelize remains to fix a class of functions F and to assume that
f ? ∈ F .

• Modelize = make an assumption.

59

Mathematical framework

• n i.i.d observations (X1,Y1), . . . , (Xn,Yn) in X × Y.
• ` : Y × Y → R+ cost function.

Problem

Find a good estimate fn(.) = fn(.,Dn) of

f ? ∈ argmin
f
R(f) = E[`(Y , f (X))].

Model

• Modelize remains to fix a class of functions F and to assume that
f ? ∈ F .

• Modelize = make an assumption.

59

f ?

F

f̂

Given (X1,Y1), . . . , (Xn,Yn), find the best

machine f ∈ F .

R(f̂)−R? =R(f̂)− inf
f ∈F
R(f) + inf

f ∈F
R(f)−R?.

=Estimation error + Approximation error.

Remarks

• These two terms vary in opposite directions.

• Statistician’s job: trade-off between these two terms.

60

f ?

F

f̂

Given (X1,Y1), . . . , (Xn,Yn), find the best

machine f ∈ F .

R(f̂)−R? =R(f̂)− inf
f ∈F
R(f) + inf

f ∈F
R(f)−R?.

=Estimation error + Approximation error.

Remarks

• These two terms vary in opposite directions.

• Statistician’s job: trade-off between these two terms.

60

f ?

F

f̂

Given (X1,Y1), . . . , (Xn,Yn), find the best

machine f ∈ F .

R(f̂)−R? =R(f̂)− inf
f ∈F
R(f) + inf

f ∈F
R(f)−R?.

=Estimation error + Approximation error.

Remarks

• These two terms vary in opposite directions.

• Statistician’s job: trade-off between these two terms. 60

Parametric and non parametric

Definition

• If F = {fθ : θ ∈ Θ} with Θ of finite dimension, then the model is
parametric.

• If F is an infinite dimensional space, then the model is non-parametric.

Remark

• Non-parametric seems more interesting (since less restrictive).

• There is a price to be paid... More difficult to estimate for such models.

• Loss of accuracy in NP models. In this part, we will study this loss.

61

Parametric and non parametric

Definition

• If F = {fθ : θ ∈ Θ} with Θ of finite dimension, then the model is
parametric.

• If F is an infinite dimensional space, then the model is non-parametric.

Remark

• Non-parametric seems more interesting (since less restrictive).

• There is a price to be paid...

More difficult to estimate for such models.

• Loss of accuracy in NP models. In this part, we will study this loss.

61

Parametric and non parametric

Definition

• If F = {fθ : θ ∈ Θ} with Θ of finite dimension, then the model is
parametric.

• If F is an infinite dimensional space, then the model is non-parametric.

Remark

• Non-parametric seems more interesting (since less restrictive).

• There is a price to be paid... More difficult to estimate for such models.

• Loss of accuracy in NP models. In this part, we will study this loss.

61

Parametric and non parametric

Definition

• If F = {fθ : θ ∈ Θ} with Θ of finite dimension, then the model is
parametric.

• If F is an infinite dimensional space, then the model is non-parametric.

Remark

• Non-parametric seems more interesting (since less restrictive).

• There is a price to be paid... More difficult to estimate for such models.

• Loss of accuracy in NP models. In this part, we will study this loss.

61

Outline
1. Some parametric methods

Linear and logistic models

Linear discriminant analysis

Just one explanatory variable

LDA: general case

2. Some nonparametric methods

Kernel and nearest neighbors methods

The curse of dimensionality
3. Empirical risk minimization

Setting

Caret package
4. Bibliography

62

Outline
1. Some parametric methods

Linear and logistic models

Linear discriminant analysis

Just one explanatory variable

LDA: general case

2. Some nonparametric methods

Kernel and nearest neighbors methods

The curse of dimensionality
3. Empirical risk minimization

Setting

Caret package
4. Bibliography

63

The linear model

• In regression with X = Rd , the linear model is the parametric
reference model.

• This model makes the assumption that the regression function is linear:

m?(x) = E[Y |X = x] = β1x1 + . . .+ βdxd .

• Or equivalently
Y = β1X1 + . . .+ βdXd + ε

where E[ε|X = x] = 0 and V[ε|X = x] = σ2.

Remark

Estimate m? ⇐⇒ estimate β ∈ Rd (finite dimension =⇒ parametric
model).

64

The linear model

• In regression with X = Rd , the linear model is the parametric
reference model.

• This model makes the assumption that the regression function is linear:

m?(x) = E[Y |X = x] = β1x1 + . . .+ βdxd .

• Or equivalently
Y = β1X1 + . . .+ βdXd + ε

where E[ε|X = x] = 0 and V[ε|X = x] = σ2.

Remark

Estimate m? ⇐⇒ estimate β ∈ Rd (finite dimension =⇒ parametric
model).

64

Some properties

• Least squares estimates minimize

n∑
i=1

ε2i =
n∑

i=1

(Yi − (β1Xi1 + . . .+ βdXid))2.

The solution is given by

β̂n = (XtX)−1XtY.

• Regression function m? is thus estimated by

m̂n(x) = β̂1x1 + . . .+ β̂dxd .

65

Some properties

• Least squares estimates minimize

n∑
i=1

ε2i =
n∑

i=1

(Yi − (β1Xi1 + . . .+ βdXid))2.

The solution is given by

β̂n = (XtX)−1XtY.

• Regression function m? is thus estimated by

m̂n(x) = β̂1x1 + . . .+ β̂dxd .

65

Assumption
Under some technical assumptions, we prove that

• E[β̂] = β and V[β̂] = (XtX)−1σ2.

We deduce that (exercise 2, IML0)

E[‖β̂ − β‖2] = O
(
1
n

)
and E[(m̂n(x)−m?(x))2] = O

(
1
n

)
.

Remark

• Least squares estimates achieve the parametric rate (1/n).

• Moreover, if errors terms εi , i = 1 . . . , n are Gaussian, we can compute
the distribution of the least squares estimates (confidence intervals,
test statistics...).

• See [Grob, 2003, Cornillon and Matzner-Løber, 2011] for more
information.

66

Assumption
Under some technical assumptions, we prove that

• E[β̂] = β and V[β̂] = (XtX)−1σ2.

We deduce that (exercise 2, IML0)

E[‖β̂ − β‖2] = O
(
1
n

)
and E[(m̂n(x)−m?(x))2] = O

(
1
n

)
.

Remark

• Least squares estimates achieve the parametric rate (1/n).

• Moreover, if errors terms εi , i = 1 . . . , n are Gaussian, we can compute
the distribution of the least squares estimates (confidence intervals,
test statistics...).

• See [Grob, 2003, Cornillon and Matzner-Løber, 2011] for more
information.

66

Example

• Linear model to explain ozone concentration.

> model_lin <- lm(V4~V5+V6+V7+V8+V9+V10+V11+V12+V13,data=Ozone)
> summary(model_lin)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 59.9517553 38.3286940 1.564 0.119421
V5 -0.0139111 0.0072511 -1.918 0.056527 .
V6 0.0276862 0.1741433 0.159 0.873847
V7 0.0808740 0.0237694 3.402 0.000812 ***
V8 0.1503404 0.0692994 2.169 0.031272 *
V9 0.5253439 0.1247136 4.212 3.87e-05 ***
V10 -0.0010052 0.0003944 -2.549 0.011586 *
V11 0.0049796 0.0147772 0.337 0.736501
V12 -0.1543882 0.1192917 -1.294 0.197140
V13 -0.0033951 0.0048963 -0.693 0.488883

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

67

Logistic model

• Logistic model is the "brother" of the linear model in the context of
binary classification (Y = {−1, 1}).

• This model makes the assumption that (the logit transformation of)
the probability p(x) = P(Y = 1|X = x) is linear:

logit p(x) = log
p(x)

1− p(x)
= β1x1 + . . .+ βdxd = x tβ.

• β = (β1, . . . , βd) ∈ Rd =⇒ parametric model.

• Unknown parameters β1, . . . , βd are estimated by maximizing the
(log)-likelihood:

Ln(β) =
n∑

i=1

{
yix

t
i β − log(1 + exp(x ti β))

}
.

68

Logistic model

• Logistic model is the "brother" of the linear model in the context of
binary classification (Y = {−1, 1}).

• This model makes the assumption that (the logit transformation of)
the probability p(x) = P(Y = 1|X = x) is linear:

logit p(x) = log
p(x)

1− p(x)
= β1x1 + . . .+ βdxd = x tβ.

• β = (β1, . . . , βd) ∈ Rd =⇒ parametric model.

• Unknown parameters β1, . . . , βd are estimated by maximizing the
(log)-likelihood:

Ln(β) =
n∑

i=1

{
yix

t
i β − log(1 + exp(x ti β))

}
.

68

Some properties

Theorem [Fahrmeir and Kaufmann, 1985]
Under technical assumptions we have

1. the ML estimate {β̂n}n is consistant: β̂n
P→ β;

2. the ML estimate {β̂n}n is asymptotically gaussian:

√
n(β̂n − β)

L→ N (0, I−1(β)).

3. Rate of convergence:

E[‖β̂ − β‖2] = O
(
1
n

)
.

Important remark

Again, the ML estimate achieves the parametric rate (1/n).

69

Some properties

Theorem [Fahrmeir and Kaufmann, 1985]
Under technical assumptions we have

1. the ML estimate {β̂n}n is consistant: β̂n
P→ β;

2. the ML estimate {β̂n}n is asymptotically gaussian:

√
n(β̂n − β)

L→ N (0, I−1(β)).

3. Rate of convergence:

E[‖β̂ − β‖2] = O
(
1
n

)
.

Important remark

Again, the ML estimate achieves the parametric rate (1/n).

69

Some properties

Theorem [Fahrmeir and Kaufmann, 1985]
Under technical assumptions we have

1. the ML estimate {β̂n}n is consistant: β̂n
P→ β;

2. the ML estimate {β̂n}n is asymptotically gaussian:

√
n(β̂n − β)

L→ N (0, I−1(β)).

3. Rate of convergence:

E[‖β̂ − β‖2] = O
(
1
n

)
.

Important remark

Again, the ML estimate achieves the parametric rate (1/n).
69

Example

• In R, we can fit a logistic model with the glm function.

> model_log <- glm(type~.,data=spam,family=binomial)
> summary(model_log)$coefficients[1:5,]

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.5686144 0.1420362 -11.043767 2.349719e-28
make -0.3895185 0.2314521 -1.682933 9.238799e-02
address -0.1457768 0.0692792 -2.104194 3.536157e-02
all 0.1141402 0.1103011 1.034806 3.007594e-01
num3d 2.2515195 1.5070099 1.494031 1.351675e-01

70

Outline
1. Some parametric methods

Linear and logistic models

Linear discriminant analysis

Just one explanatory variable

LDA: general case

2. Some nonparametric methods

Kernel and nearest neighbors methods

The curse of dimensionality
3. Empirical risk minimization

Setting

Caret package
4. Bibliography

71

Presentation

• Logistic regression directly modelizes the parameter of the distribution
of Y |X = x .

• Linear discriminant analysis do the opposite. It consists in

• modelizing the distributions of X |Y = j for j = 1, . . . ,K by gaussian
distributions fj(x).

• calculating the posterior distribution Y |X = x with Bayes formula :

P(Y = j |X = x) =
πj fj(x)∑K
`=1 π`f`(x)

where πj = P(Y = j), j = 1, . . . ,K .

72

Presentation

• Logistic regression directly modelizes the parameter of the distribution
of Y |X = x .

• Linear discriminant analysis do the opposite. It consists in

• modelizing the distributions of X |Y = j for j = 1, . . . ,K by gaussian
distributions fj(x).

• calculating the posterior distribution Y |X = x with Bayes formula :

P(Y = j |X = x) =
πj fj(x)∑K
`=1 π`f`(x)

where πj = P(Y = j), j = 1, . . . ,K .

72

Example: Fisher’s iris problem

• Explain iris species by lengths and widths of petals and sepals.

• 5 variables :
• the target variable species (categorical).

• lengths and widths of petals and sepals.

> summary(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width

Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Median :1.300
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

Species
setosa :50
versicolor:50
virginica :50

73

Example: Fisher’s iris problem

• Explain iris species by lengths and widths of petals and sepals.

• 5 variables :
• the target variable species (categorical).

• lengths and widths of petals and sepals.

> summary(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width

Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Median :1.300
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

Species
setosa :50
versicolor:50
virginica :50

73

• We first want to explain Species by
• We can draw the following boxplot.

> ggplot(iris)+aes(x=Species,y=Petal.Length)+geom_boxplot()+theme_bw()

●

●

●●

●

2

4

6

setosa versicolor virginica
Species

Pe
ta

l.L
en

gt
h

74

Visualize densities

• geom_density allows to visualize conditional distributions of X |Y = j ,
j = 1, 2, 3.

> ggplot(iris)+aes(x=Petal.Length,color=Species)+geom_density(size=1)

0

1

2

2 4 6
Petal.Length

de
ns

ity

Species

setosa

versicolor

virginica

75

A model

• The three densities on the graph look like Gaussian densities.

• Let X =Petal.Length and Y= Species. We assume that distributions
of X given Y = k are Gaussians N (µk , σ

2), k = 1, 2, 3.

• Densities of X |Y = k are thus given by

fX |Y=k(x) =
1√
2πσ

exp

(
−(x − µk)2

2σ2

)
.

76

A model

• The three densities on the graph look like Gaussian densities.

• Let X =Petal.Length and Y= Species. We assume that distributions
of X given Y = k are Gaussians N (µk , σ

2), k = 1, 2, 3.

• Densities of X |Y = k are thus given by

fX |Y=k(x) =
1√
2πσ

exp

(
−(x − µk)2

2σ2

)
.

76

A model

• The three densities on the graph look like Gaussian densities.

• Let X =Petal.Length and Y= Species. We assume that distributions
of X given Y = k are Gaussians N (µk , σ

2), k = 1, 2, 3.

• Densities of X |Y = k are thus given by

fX |Y=k(x) =
1√
2πσ

exp

(
−(x − µk)2

2σ2

)
.

76

Estimation

• To obtain posterior probabilities P(Y = k|X = x), we have to
estimate:

• parameters µk et σ2 of the Gaussian distributions;
• prior probabilities πk = P(Y = k).

Estimators
These quantities are naturally estimated by

µ̂k =
1
nk

∑
i :Yi=k

Xi , σ̂2 =
1

n − 2

K∑
k=1

∑
i :Yi=k

(Xi − µ̂k)2

π̂k =
nk
n

where nk =
n∑

i=1

1{Yi=k}.

77

Estimation

• To obtain posterior probabilities P(Y = k|X = x), we have to
estimate:
• parameters µk et σ2 of the Gaussian distributions;
• prior probabilities πk = P(Y = k).

Estimators
These quantities are naturally estimated by

µ̂k =
1
nk

∑
i :Yi=k

Xi , σ̂2 =
1

n − 2

K∑
k=1

∑
i :Yi=k

(Xi − µ̂k)2

π̂k =
nk
n

where nk =
n∑

i=1

1{Yi=k}.

77

Estimation

• To obtain posterior probabilities P(Y = k|X = x), we have to
estimate:
• parameters µk et σ2 of the Gaussian distributions;
• prior probabilities πk = P(Y = k).

Estimators
These quantities are naturally estimated by

µ̂k =
1
nk

∑
i :Yi=k

Xi , σ̂2 =
1

n − 2

K∑
k=1

∑
i :Yi=k

(Xi − µ̂k)2

π̂k =
nk
n

where nk =
n∑

i=1

1{Yi=k}.

77

Estimation

• To obtain posterior probabilities P(Y = k|X = x), we have to
estimate:
• parameters µk et σ2 of the Gaussian distributions;
• prior probabilities πk = P(Y = k).

Estimators
These quantities are naturally estimated by

µ̂k =
1
nk

∑
i :Yi=k

Xi , σ̂2 =
1

n − 2

K∑
k=1

∑
i :Yi=k

(Xi − µ̂k)2

π̂k =
nk
n

where nk =
n∑

i=1

1{Yi=k}.

77

Example with R

> library(MASS)
> model <- lda(Species~Petal.Length,data=iris)
> model
Call:
lda(Species ~ Petal.Length, data = iris)

Prior probabilities of groups:
setosa versicolor virginica

0.3333333 0.3333333 0.3333333

Group means:
Petal.Length

setosa 1.462
versicolor 4.260
virginica 5.552

Coefficients of linear discriminants:
LD1

Petal.Length 2.323774

78

Making predictions

• predict function allows to predict species of new iris:

> don_pred
Sepal.Length Sepal.Width Petal.Length Petal.Width

5.0 3.6 1.4 0.2
5.5 2.4 3.7 1.0
7.1 3.0 5.9 2.1
6.7 3.3 5.7 2.5

• We just have to enter

> predict(model,newdata=don_pred)
$class
[1] setosa versicolor virginica virginica
Levels: setosa versicolor virginica
$posterior

setosa versicolor virginica
1.000000e+00 2.589892e-10 6.170197e-21
3.123152e-06 9.997752e-01 2.217125e-04
1.113402e-23 9.723296e-04 9.990277e-01
9.198362e-22 3.913109e-03 9.960869e-01

79

Making predictions

• predict function allows to predict species of new iris:

> don_pred
Sepal.Length Sepal.Width Petal.Length Petal.Width

5.0 3.6 1.4 0.2
5.5 2.4 3.7 1.0
7.1 3.0 5.9 2.1
6.7 3.3 5.7 2.5

• We just have to enter

> predict(model,newdata=don_pred)
$class
[1] setosa versicolor virginica virginica
Levels: setosa versicolor virginica
$posterior

setosa versicolor virginica
1.000000e+00 2.589892e-10 6.170197e-21
3.123152e-06 9.997752e-01 2.217125e-04
1.113402e-23 9.723296e-04 9.990277e-01
9.198362e-22 3.913109e-03 9.960869e-01 79

• Goal: explain iris specie by the 4 explanatory variables Sepal.Length,
Sepal.Width, Petal.Length, Petal.Width. We denote by
X1,X2,X3,X4 these 4 variables and X = (X1,X2,X3,X4).

• The approach is similar to the previous case (1 variable)

1. We model distributions of X |Y = k by Gaussian multivariate
distributions.

2. We use Bayes formula to obtain posterior probabilities
P(Y = k|X = x).

80

• Goal: explain iris specie by the 4 explanatory variables Sepal.Length,
Sepal.Width, Petal.Length, Petal.Width. We denote by
X1,X2,X3,X4 these 4 variables and X = (X1,X2,X3,X4).

• The approach is similar to the previous case (1 variable)

1. We model distributions of X |Y = k by Gaussian multivariate
distributions.

2. We use Bayes formula to obtain posterior probabilities
P(Y = k|X = x).

80

• Goal: explain iris specie by the 4 explanatory variables Sepal.Length,
Sepal.Width, Petal.Length, Petal.Width. We denote by
X1,X2,X3,X4 these 4 variables and X = (X1,X2,X3,X4).

• The approach is similar to the previous case (1 variable)

1. We model distributions of X |Y = k by Gaussian multivariate
distributions.

2. We use Bayes formula to obtain posterior probabilities
P(Y = k |X = x).

80

LDA: general case

• Distributions of X |Y = k are are assumed to be Gaussians N (µk ,Σ)

where µk ∈ Rp and Σ is a p × p definite positive matrix. Densities of
X |Y = k are thus given by:

fX |Y=k(x) =
1

(2πdet(Σ))p/2
exp

(
−1
2

(x − µk)tΣ−1(x − µk)

)
.

• Posterior probabilities P(Y = k |X = x) are obtained thanks to the
Bayes formula

P(Y = k|X = x) =
πk fX |Y=k(x)

f (x)

where f (x), the density of X , is computed from fX |Y=k(x) and from
prior probabilites πk = P(Y = k).

81

LDA: general case

• Distributions of X |Y = k are are assumed to be Gaussians N (µk ,Σ)

where µk ∈ Rp and Σ is a p × p definite positive matrix. Densities of
X |Y = k are thus given by:

fX |Y=k(x) =
1

(2πdet(Σ))p/2
exp

(
−1
2

(x − µk)tΣ−1(x − µk)

)
.

• Posterior probabilities P(Y = k |X = x) are obtained thanks to the
Bayes formula

P(Y = k|X = x) =
πk fX |Y=k(x)

f (x)

where f (x), the density of X , is computed from fX |Y=k(x) and from
prior probabilites πk = P(Y = k).

81

Estimation

• We again need to estimate unknown parameters of the model:

• mean vectors µk , k = 1, . . . ,K and covariance matrix Σ of the Gaussian
distributions;

• prior probabilities πk = P(Y = k).

Estimators
They are defined by

µ̂k =
1
nk

∑
i :Yi=k

Xi , Σ̂ =
1

n − K

K∑
k=1

∑
i :Yi=k

(Xi − µ̂k)(Xi − µ̂k)t

π̂k =
nk
n

with nk =
n∑

i=1

1{Yi=k}.

82

Estimation

• We again need to estimate unknown parameters of the model:
• mean vectors µk , k = 1, . . . ,K and covariance matrix Σ of the Gaussian

distributions;
• prior probabilities πk = P(Y = k).

Estimators
They are defined by

µ̂k =
1
nk

∑
i :Yi=k

Xi , Σ̂ =
1

n − K

K∑
k=1

∑
i :Yi=k

(Xi − µ̂k)(Xi − µ̂k)t

π̂k =
nk
n

with nk =
n∑

i=1

1{Yi=k}.

82

Estimation

• We again need to estimate unknown parameters of the model:
• mean vectors µk , k = 1, . . . ,K and covariance matrix Σ of the Gaussian

distributions;
• prior probabilities πk = P(Y = k).

Estimators
They are defined by

µ̂k =
1
nk

∑
i :Yi=k

Xi , Σ̂ =
1

n − K

K∑
k=1

∑
i :Yi=k

(Xi − µ̂k)(Xi − µ̂k)t

π̂k =
nk
n

with nk =
n∑

i=1

1{Yi=k}.

82

Estimation

• We again need to estimate unknown parameters of the model:
• mean vectors µk , k = 1, . . . ,K and covariance matrix Σ of the Gaussian

distributions;
• prior probabilities πk = P(Y = k).

Estimators
They are defined by

µ̂k =
1
nk

∑
i :Yi=k

Xi , Σ̂ =
1

n − K

K∑
k=1

∑
i :Yi=k

(Xi − µ̂k)(Xi − µ̂k)t

π̂k =
nk
n

with nk =
n∑

i=1

1{Yi=k}.

82

Example with R

> full_model<- lda(Species~.,data=iris)
> full_model
Call:
lda(Species ~ ., data = iris)

Prior probabilities of groups:
setosa versicolor virginica

0.3333333 0.3333333 0.3333333

Group means:
Sepal.Length Sepal.Width Petal.Length Petal.Width

setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026

83

Making predictions

• predict function allow to predict species for new iris
> don_pred

Sepal.Length Sepal.Width Petal.Length Petal.Width
5.0 3.6 1.4 0.2
5.5 2.4 3.7 1.0
7.1 3.0 5.9 2.1
6.7 3.3 5.7 2.5

• We just have to enter

> predict(model_complet,newdata=don_pred)
$class
[1] setosa versicolor virginica virginica
Levels: setosa versicolor virginica

$posterior
setosa versicolor virginica

5 1.000000e+00 1.637387e-22 1.082605e-42
82 9.648075e-16 9.999997e-01 3.266704e-07
103 1.231264e-42 2.592826e-05 9.999741e-01
145 4.048249e-46 2.524984e-07 9.999997e-01

84

Making predictions

• predict function allow to predict species for new iris
> don_pred

Sepal.Length Sepal.Width Petal.Length Petal.Width
5.0 3.6 1.4 0.2
5.5 2.4 3.7 1.0
7.1 3.0 5.9 2.1
6.7 3.3 5.7 2.5

• We just have to enter

> predict(model_complet,newdata=don_pred)
$class
[1] setosa versicolor virginica virginica
Levels: setosa versicolor virginica

$posterior
setosa versicolor virginica

5 1.000000e+00 1.637387e-22 1.082605e-42
82 9.648075e-16 9.999997e-01 3.266704e-07
103 1.231264e-42 2.592826e-05 9.999741e-01
145 4.048249e-46 2.524984e-07 9.999997e-01

84

Classification rule

• Reminder: LDA allows to estimate posterior probabilities:

P(Y = k |X = x).

• Classification rule: we choose the group which maximizes these
probabilities

ĝ(x) = k if and only if P(Y = k |X = x) ≥ P(Y = j |X = x), j 6= k .

• Boundary between 2 groups: set of points x such that
P(Y = k |X = x) = P(Y = j |X = x).

85

Classification rule

• Reminder: LDA allows to estimate posterior probabilities:

P(Y = k |X = x).

• Classification rule: we choose the group which maximizes these
probabilities

ĝ(x) = k if and only if P(Y = k |X = x) ≥ P(Y = j |X = x), j 6= k .

• Boundary between 2 groups: set of points x such that
P(Y = k |X = x) = P(Y = j |X = x).

85

• Or

log
P(Y = k |X = x)

P(Y = `|X = x)
= log

fk(x)

f`(x)
+ log

πk
π`

= log
πk
π`
− 1

2
(µk + µ`)

tΣ−1(µk − µ`)

+ x tΣ−1(µk − µ`) (1)

Conclusion
Bondary between 2 groups is linear!

86

• Or

log
P(Y = k |X = x)

P(Y = `|X = x)
= log

fk(x)

f`(x)
+ log

πk
π`

= log
πk
π`
− 1

2
(µk + µ`)

tΣ−1(µk − µ`)

+ x tΣ−1(µk − µ`) (1)

Conclusion
Bondary between 2 groups is linear!

86

Example

• Boundary between "Setosa" and "Versicolor" for 2 variables.

> iris1 <- iris[iris$Species%in%c("setosa","versicolor"),c(3,2,5)]
> ggplot(iris1)+aes(x=Petal.Length,y=Sepal.Width,color=Species)+geom_point()

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5
Petal.Length

Se
pa

l.W
id

th Species
●

●

setosa

versicolor

87

Boundary two classes

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

88

Example - 3 labels

• We do the same for the 3 species (3 classes).

> ggplot(iris)+aes(x=Petal.Length,y=Sepal.Width,color=Species)+geom_point()

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

2.0

2.5

3.0

3.5

4.0

4.5

2 4 6
Petal.Length

Se
pa

l.W
id

th Species
●

●

●

setosa

versicolor

virginica

89

Boundaries

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

2.0

2.5

3.0

3.5

4.0

4.5

2 4 6
Petal.Length

Se
pa

l.W
id

th label
●

●

●

setosa

versicolor

virginica

90

Linear discriminant functions

Definition
Linear discriminant functions are defined by

δk(x) = x tΣ−1µk −
1
2
µtkΣ−1µk + log πk , k = 1, . . . ,K .

Propriété
Thanks to (1), we deduce

argmax
k

P(Y = k |X = x) = argmax
k

δk(x).

Conclusion
Maximising posterior probabilities is similar to maximising linear
discriminant functions.

91

Linear discriminant functions

Definition
Linear discriminant functions are defined by

δk(x) = x tΣ−1µk −
1
2
µtkΣ−1µk + log πk , k = 1, . . . ,K .

Propriété
Thanks to (1), we deduce

argmax
k

P(Y = k |X = x) = argmax
k

δk(x).

Conclusion
Maximising posterior probabilities is similar to maximising linear
discriminant functions.

91

Linear discriminant functions

Definition
Linear discriminant functions are defined by

δk(x) = x tΣ−1µk −
1
2
µtkΣ−1µk + log πk , k = 1, . . . ,K .

Propriété
Thanks to (1), we deduce

argmax
k

P(Y = k |X = x) = argmax
k

δk(x).

Conclusion
Maximising posterior probabilities is similar to maximising linear
discriminant functions.

91

Outline
1. Some parametric methods

Linear and logistic models

Linear discriminant analysis

Just one explanatory variable

LDA: general case

2. Some nonparametric methods

Kernel and nearest neighbors methods

The curse of dimensionality
3. Empirical risk minimization

Setting

Caret package
4. Bibliography

92

Local averaging

Idea

• Parametric models require strong assumptions on the function to
estimate.

• Nonparametric approaches try to be less restrictive.

• These methods consists of studying the data on a neighborhood of the
points where we want to estimate the target function.

• For both regression and supervised classification, nonparametric
approaches rely on local averaging:

f̂n(x) =
n∑

i=1

Wni (x)Yi

where the weights Wni depend on the algorithm.
• Wni large if Xi is closed to x .

93

Local averaging

Idea

• Parametric models require strong assumptions on the function to
estimate.

• Nonparametric approaches try to be less restrictive.

• These methods consists of studying the data on a neighborhood of the
points where we want to estimate the target function.

• For both regression and supervised classification, nonparametric
approaches rely on local averaging:

f̂n(x) =
n∑

i=1

Wni (x)Yi

where the weights Wni depend on the algorithm.
• Wni large if Xi is closed to x .

93

Local averaging

Idea

• Parametric models require strong assumptions on the function to
estimate.

• Nonparametric approaches try to be less restrictive.

• These methods consists of studying the data on a neighborhood of the
points where we want to estimate the target function.

• For both regression and supervised classification, nonparametric
approaches rely on local averaging:

f̂n(x) =
n∑

i=1

Wni (x)Yi

where the weights Wni depend on the algorithm.
• Wni large if Xi is closed to x .

93

Outline
1. Some parametric methods

Linear and logistic models

Linear discriminant analysis

Just one explanatory variable

LDA: general case

2. Some nonparametric methods

Kernel and nearest neighbors methods

The curse of dimensionality
3. Empirical risk minimization

Setting

Caret package
4. Bibliography

94

Kernel estimate

• (X1,Y1), . . . , (Xn,Yn) i.i.d. with the same law as (X ,Y).

• Goal: estimate m?(x) = E[Y |X = x].

95

Kernel estimate

• (X1,Y1), . . . , (Xn,Yn) i.i.d. with the same law as (X ,Y).

• Goal: estimate m?(x) = E[Y |X = x].

x

95

Kernel estimate

• (X1,Y1), . . . , (Xn,Yn) i.i.d. with the same law as (X ,Y).

• Goal: estimate m?(x) = E[Y |X = x].

xx − h x + h

95

Kernel estimate

• (X1,Y1), . . . , (Xn,Yn) i.i.d. with the same law as (X ,Y).

• Goal: estimate m?(x) = E[Y |X = x].

xx − h x + h

95

• The estimator

m̂n(x) =Average(Yi : Xi ∈ [x − h, x + h]) =

n∑
i=1

1x−h≤Xi≤x+hYi

n∑
i=1

1x−h≤Xi≤x+h

.

Definition

Let h > 0 and K : X → R+. The kernel estimate with bandwidth h and
kernel K is defined by

m̂n(x) =

n∑
i=1

K

(
Xi − x

h

)
Yi

n∑
i=1

K

(
Xi − x

h

) .

96

• The estimator

m̂n(x) =Average(Yi : Xi ∈ [x − h, x + h]) =

n∑
i=1

1x−h≤Xi≤x+hYi

n∑
i=1

1x−h≤Xi≤x+h

.

Definition

Let h > 0 and K : X → R+. The kernel estimate with bandwidth h and
kernel K is defined by

m̂n(x) =

n∑
i=1

K

(
Xi − x

h

)
Yi

n∑
i=1

K

(
Xi − x

h

) .

96

Choice of the bandwidth

• Usual kernels when X = Rd :
1. Uniform: K (x) = 1‖x‖≤1 ;
2. Gaussian: K (x) = exp(−‖x‖2) ;
3. Epanechnikov: K (x) = 3

4 (1− ‖x‖2)1‖x‖≤1.

=⇒ provide weights according to the distance of x .

• The choice of the bandwidth h reveals crucial for the performance of
the estimate:
1. h large: steady estimator, low variance, large bias;
2. h small: unsteady estimator ("overfitting"), large variance, small bias.

Conclusion
h governs the complexity of the estimate.

97

Choice of the bandwidth

• Usual kernels when X = Rd :
1. Uniform: K (x) = 1‖x‖≤1 ;
2. Gaussian: K (x) = exp(−‖x‖2) ;
3. Epanechnikov: K (x) = 3

4 (1− ‖x‖2)1‖x‖≤1.

=⇒ provide weights according to the distance of x .

• The choice of the bandwidth h reveals crucial for the performance of
the estimate:
1. h large:

steady estimator, low variance, large bias;
2. h small: unsteady estimator ("overfitting"), large variance, small bias.

Conclusion
h governs the complexity of the estimate.

97

Choice of the bandwidth

• Usual kernels when X = Rd :
1. Uniform: K (x) = 1‖x‖≤1 ;
2. Gaussian: K (x) = exp(−‖x‖2) ;
3. Epanechnikov: K (x) = 3

4 (1− ‖x‖2)1‖x‖≤1.

=⇒ provide weights according to the distance of x .

• The choice of the bandwidth h reveals crucial for the performance of
the estimate:
1. h large: steady estimator, low variance, large bias;
2. h small:

unsteady estimator ("overfitting"), large variance, small bias.

Conclusion
h governs the complexity of the estimate.

97

Choice of the bandwidth

• Usual kernels when X = Rd :
1. Uniform: K (x) = 1‖x‖≤1 ;
2. Gaussian: K (x) = exp(−‖x‖2) ;
3. Epanechnikov: K (x) = 3

4 (1− ‖x‖2)1‖x‖≤1.

=⇒ provide weights according to the distance of x .

• The choice of the bandwidth h reveals crucial for the performance of
the estimate:
1. h large: steady estimator, low variance, large bias;
2. h small: unsteady estimator ("overfitting"), large variance, small bias.

Conclusion
h governs the complexity of the estimate.

97

Example

• We generate data (Xi ,Yi), i = 1, . . . , n = 200 according to the model

Yi = sin(Xi) + εi , i = 1, . . . , n

where Xi has a uniform distribution on [−2π, 2π], εi has a Gaussian
distribution N (0, 0.22).

> n <- 200; set.seed(1234)
> X <- runif(n,-2*pi,2*pi)
> set.seed(5678)
> eps <- rnorm(n,0,0.2)
> Y <- sin(X)+eps
> df <- data.frame(X=X,Y=Y)
> x <- seq(-2*pi,2*pi,by=0.01)
> df1 <- data.frame(x=x,y=sin(x))
> ggplot(df1)+aes(x=x,y=y)+

geom_line(size=1)+
geom_point(data=df,aes(x=X,y=Y))

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.5

−1.0

−0.5

0.0

0.5

1.0

−4 0 4

x

y

98

• locpoly function from kernSmooth package allows to fit kernel
estimates.

> h1 <- 0.5;h2 <- 3;h3 <- 0.01
> fx1 <-locpoly(X,Y,bandwidth=h1)
> fx2 <-locpoly(X,Y,bandwidth=h2)
> fx3 <-locpoly(X,Y,bandwidth=h3)
> df1 <- data.frame(x=x,y=sin(x))
> df2 <- data.frame(x=fx1$x,

"H0.5"=fx1$y,"H3"=fx2$y,
"H0.01"=fx3$y)

> df22 <- melt(df2,id.vars=1)
> names(df22)[2:3] <- c("fenêtre",

"y")
> ggplot(df22)+aes(x=x,y=y)+

geom_line(aes(color=fenêtre,
lty=fenêtre))+geom_line

(data=df1,aes(x=x,y=y),size=1)
−1.5

−1.0

−0.5

0.0

0.5

1.0

−4 0 4

x

y

fenêtre

H0.5

H3

H0.01

• Exercise 4-IML1.

99

• locpoly function from kernSmooth package allows to fit kernel
estimates.

> h1 <- 0.5;h2 <- 3;h3 <- 0.01
> fx1 <-locpoly(X,Y,bandwidth=h1)
> fx2 <-locpoly(X,Y,bandwidth=h2)
> fx3 <-locpoly(X,Y,bandwidth=h3)
> df1 <- data.frame(x=x,y=sin(x))
> df2 <- data.frame(x=fx1$x,

"H0.5"=fx1$y,"H3"=fx2$y,
"H0.01"=fx3$y)

> df22 <- melt(df2,id.vars=1)
> names(df22)[2:3] <- c("fenêtre",

"y")
> ggplot(df22)+aes(x=x,y=y)+

geom_line(aes(color=fenêtre,
lty=fenêtre))+geom_line

(data=df1,aes(x=x,y=y),size=1)
−1.5

−1.0

−0.5

0.0

0.5

1.0

−4 0 4

x

y

fenêtre

H0.5

H3

H0.01

• Exercise 4-IML1.

99

Nearest neighbors algorithm

Definition
Let k ≤ n an integer. The k-nearest neighbors estimate is defined by

m̂n(x) =
1
k

∑
i∈knn(x)

Yi

where for x ∈ X

knn(x) = {i : Xi is among the knn of x among {X1, . . . ,Xn}}.

Remark
Once again, k reveals crucial for the performance of the estimate:

1. k large: steady estimate, low variance, high bias;

2. k small: "overfitting", large variance, small bias.

=⇒ k governs the complexity of the model.

100

Nearest neighbors algorithm

Definition
Let k ≤ n an integer. The k-nearest neighbors estimate is defined by

m̂n(x) =
1
k

∑
i∈knn(x)

Yi

where for x ∈ X

knn(x) = {i : Xi is among the knn of x among {X1, . . . ,Xn}}.

Remark
Once again, k reveals crucial for the performance of the estimate:

1. k large: steady estimate, low variance, high bias;

2. k small: "overfitting", large variance, small bias.

=⇒ k governs the complexity of the model.

100

Nearest neighbors algorithm

Definition
Let k ≤ n an integer. The k-nearest neighbors estimate is defined by

m̂n(x) =
1
k

∑
i∈knn(x)

Yi

where for x ∈ X

knn(x) = {i : Xi is among the knn of x among {X1, . . . ,Xn}}.

Remark
Once again, k reveals crucial for the performance of the estimate:

1. k large: steady estimate, low variance, high bias;

2. k small: "overfitting", large variance, small bias.

=⇒ k governs the complexity of the model.
100

Example

• knn.reg function from FNN package allows to fit k-nearest neighbors
estimate.

> k1 <- 10; k2 <- 100; k3 <- 1
> fx1 <- knn.reg(X,as.matrix(x),y=Y,k=k1)
> fx2 <- knn.reg(X,as.matrix(x),y=Y,k=k2)
> fx3 <- knn.reg(X,as.matrix(x),y=Y,k=k3)
> df1 <- data.frame(x=x,y=sin(x))
> df2 <- data.frame(x=x,"K10"=fx1$pred,

"K100"=fx2$pred,"K1"=fx3$pred)
> df22 <- melt(df2,id.vars=1)
> names(df22)[2:3] <- c("KNN","y")
> ggplot(df22)+aes(x=x,y=y)+

geom_line(aes(color=KNN,lty=KNN))+
geom_line(data=df1,aes(x=x,y=y),size=1)

−1.5

−1.0

−0.5

0.0

0.5

1.0

−4 0 4
x

y

KNN

K10

K100

K1

101

Supervised classification

• Kernel and nearest neighbors estimates have been presented in
regression (Y = R).

• Approaches are similar in supervised classification:

1. neighborhoods are defined in the same way;

2. (only) change:

instead of averaging the Yi in a neighborhood of x , we
make a majority vote.

102

Supervised classification

• Kernel and nearest neighbors estimates have been presented in
regression (Y = R).

• Approaches are similar in supervised classification:

1. neighborhoods are defined in the same way;

2. (only) change: instead of averaging the Yi in a neighborhood of x , we
make a majority vote.

102

Kernel for supervised classification

103

Kernel for supervised classification

103

Kernel for supervised classification

h

103

Kernel for supervised classification

h

103

k-nn for supervised classification

104

k-nn for supervised classification

104

k-nn for supervised classification

104

k-nn for supervised classification

104

The k-nn rule

• Let k ≤ n, the k-nn rule apply a majority vote to assess the group of
new individuals:

ĝn(x) = MV (Yi : i ∈ knn(x)) = argmax
k∈Y

∑
i∈knn(x)

1Yi=k

where knn(x) = {i : Xi is among the knn of x among {X1, . . . ,Xn}}.

Remark
As for regression, the choice of k reveals crucial for the performance of
the estimate:

1. k large: "steady" estimate, small variance, large bias;

2. k small: "overfitting”, large variance, small bias.

105

The k-nn rule

• Let k ≤ n, the k-nn rule apply a majority vote to assess the group of
new individuals:

ĝn(x) = MV (Yi : i ∈ knn(x)) = argmax
k∈Y

∑
i∈knn(x)

1Yi=k

where knn(x) = {i : Xi is among the knn of x among {X1, . . . ,Xn}}.

Remark
As for regression, the choice of k reveals crucial for the performance of
the estimate:

1. k large: "steady" estimate, small variance, large bias;

2. k small: "overfitting”, large variance, small bias.

105

Example

• Goal: explain a binary variable Y by 2 continuous variables X1 and X2.
We have n = 2 000 observations.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X1

X
2

Y
●

●

0

1

106

k-nn rules

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X1

X2

label

0

1

1 NN

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X1

X2

label

0

1

3 NN

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X1

X2

label

0

1

80 NN

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X1

X2

label

1

1000 NN

Conclusion
We clearly visualize how the choice of k is important.

107

k-nn rules

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X1

X2

label

0

1

1 NN

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X1

X2

label

0

1

3 NN

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X1

X2

label

0

1

80 NN

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X1

X2

label

1

1000 NN

Conclusion
We clearly visualize how the choice of k is important. 107

Consistency [Györfi et al., 2002]

• For both regression and supervised classification, kernel rules and
nearest neighbors rules are universally consistant (under weak
assumptions).

Theorem [Stone, 1977]

If k →∞ and k/n→ 0, then the k-nn rule is universally consistant.

Theorem [Devroye and Krzyżak, 1989]

If h→ 0 and nhd → +∞, then the kernel rule universally consistant.

108

Consistency [Györfi et al., 2002]

• For both regression and supervised classification, kernel rules and
nearest neighbors rules are universally consistant (under weak
assumptions).

Theorem [Stone, 1977]

If k →∞ and k/n→ 0, then the k-nn rule is universally consistant.

Theorem [Devroye and Krzyżak, 1989]

If h→ 0 and nhd → +∞, then the kernel rule universally consistant.

108

Outline
1. Some parametric methods

Linear and logistic models

Linear discriminant analysis

Just one explanatory variable

LDA: general case

2. Some nonparametric methods

Kernel and nearest neighbors methods

The curse of dimensionality
3. Empirical risk minimization

Setting

Caret package
4. Bibliography

109

Rate of consistency [Györfi et al., 2002]

Nonparametric methods (always) suffer from the curse of dimensionality: as
the dimension d increases, we have less and less observations in the
neighborhoods of x =⇒

less and less accurate =⇒ slower convergence rate.

Theorem
We consider the regression problem (explain Y by X1, . . . ,Xd) and denote
by mn the k-nn estimate. Under technical assumptions, the quadratic risk
of mn satisfies (see exercise 3-IML0)

R(mn) = O
(
n−

2
d+2

)
.

Consequence

• d = 1: rate n−2/3, d = 5: rate n−2/7.

• In practice, nonparametric estimates are not efficient in high
dimensional spaces.

110

Rate of consistency [Györfi et al., 2002]

Nonparametric methods (always) suffer from the curse of dimensionality: as
the dimension d increases, we have less and less observations in the
neighborhoods of x =⇒ less and less accurate =⇒

slower convergence rate.

Theorem
We consider the regression problem (explain Y by X1, . . . ,Xd) and denote
by mn the k-nn estimate. Under technical assumptions, the quadratic risk
of mn satisfies (see exercise 3-IML0)

R(mn) = O
(
n−

2
d+2

)
.

Consequence

• d = 1: rate n−2/3, d = 5: rate n−2/7.

• In practice, nonparametric estimates are not efficient in high
dimensional spaces.

110

Rate of consistency [Györfi et al., 2002]

Nonparametric methods (always) suffer from the curse of dimensionality: as
the dimension d increases, we have less and less observations in the
neighborhoods of x =⇒ less and less accurate =⇒ slower convergence rate.

Theorem
We consider the regression problem (explain Y by X1, . . . ,Xd) and denote
by mn the k-nn estimate. Under technical assumptions, the quadratic risk
of mn satisfies (see exercise 3-IML0)

R(mn) = O
(
n−

2
d+2

)
.

Consequence

• d = 1: rate n−2/3, d = 5: rate n−2/7.

• In practice, nonparametric estimates are not efficient in high
dimensional spaces.

110

Rate of consistency [Györfi et al., 2002]

Nonparametric methods (always) suffer from the curse of dimensionality: as
the dimension d increases, we have less and less observations in the
neighborhoods of x =⇒ less and less accurate =⇒ slower convergence rate.

Theorem
We consider the regression problem (explain Y by X1, . . . ,Xd) and denote
by mn the k-nn estimate. Under technical assumptions, the quadratic risk
of mn satisfies (see exercise 3-IML0)

R(mn) = O
(
n−

2
d+2

)
.

Consequence

• d = 1: rate n−2/3, d = 5: rate n−2/7.

• In practice, nonparametric estimates are not efficient in high
dimensional spaces.

110

Rate of consistency [Györfi et al., 2002]

Nonparametric methods (always) suffer from the curse of dimensionality: as
the dimension d increases, we have less and less observations in the
neighborhoods of x =⇒ less and less accurate =⇒ slower convergence rate.

Theorem
We consider the regression problem (explain Y by X1, . . . ,Xd) and denote
by mn the k-nn estimate. Under technical assumptions, the quadratic risk
of mn satisfies (see exercise 3-IML0)

R(mn) = O
(
n−

2
d+2

)
.

Consequence

• d = 1: rate n−2/3, d = 5: rate n−2/7.

• In practice, nonparametric estimates are not efficient in high
dimensional spaces. 110

Curse of dimensionality (Illustration)

0.000

0.001

0.002

0.003

0.004

0.005

0 1000 2000 3000 4000 5000

n

ra
te Dimension

param

111

Curse of dimensionality (Illustration)

0.00

0.01

0.02

0.03

0 1000 2000 3000 4000 5000

n

ra
te

Dimension

param

d1

111

Curse of dimensionality (Illustration)

0.00

0.02

0.04

0.06

0 1000 2000 3000 4000 5000

n

ra
te

Dimension

param

d1

d2

111

Curse of dimensionality (Illustration)

0.0

0.1

0.2

0.3

0.4

0 1000 2000 3000 4000 5000

n

ra
te

Dimension

param

d1

d2

d10

111

Outline
1. Some parametric methods

Linear and logistic models

Linear discriminant analysis

Just one explanatory variable

LDA: general case

2. Some nonparametric methods

Kernel and nearest neighbors methods

The curse of dimensionality
3. Empirical risk minimization

Setting

Caret package
4. Bibliography

112

Outline
1. Some parametric methods

Linear and logistic models

Linear discriminant analysis

Just one explanatory variable

LDA: general case

2. Some nonparametric methods

Kernel and nearest neighbors methods

The curse of dimensionality
3. Empirical risk minimization

Setting

Caret package
4. Bibliography

113

Choosing parameters

• Most of the machines depends on parameters.

Rules Parameters

k-nn k : number of neighbors
kernel h: bandwidth
trees depth

boosting number of iterations
... ...

• Selection of these parameters reveals crucial for the performances of
the estimates.

• Goal:
• define procedures which allow to automatically select these parameters;
• establish theoretical guarantees for these procedures (GB lecture).

114

Choosing parameters

• Most of the machines depends on parameters.

Rules Parameters

k-nn k : number of neighbors
kernel h: bandwidth
trees depth

boosting number of iterations
... ...

• Selection of these parameters reveals crucial for the performances of
the estimates.

• Goal:
• define procedures which allow to automatically select these parameters;
• establish theoretical guarantees for these procedures (GB lecture).

114

Choosing parameters

• Most of the machines depends on parameters.

Rules Parameters

k-nn k : number of neighbors
kernel h: bandwidth
trees depth

boosting number of iterations
... ...

• Selection of these parameters reveals crucial for the performances of
the estimates.

• Goal:
• define procedures which allow to automatically select these parameters;
• establish theoretical guarantees for these procedures (GB lecture).

114

Choosing parameters

• Most of the machines depends on parameters.

Rules Parameters

k-nn k : number of neighbors
kernel h: bandwidth
trees depth

boosting number of iterations
... ...

• Selection of these parameters reveals crucial for the performances of
the estimates.

• Goal:
• define procedures which allow to automatically select these parameters;
• establish theoretical guarantees for these procedures (GB lecture).

114

ERM strategy

Framework

• F a collection of machines.

• Risk for a machine f : R(f) = E[`(Y , f (X))].

• Goal: select f̂ in F such that

R(f̂) ≈ inf
f ∈F
R(f).

ERM

• Estimate the risk of the machines in F (validation hold out, cross
validation...) =⇒ R̂n(f).

• Choose the machine f̂ which minimizes the estimated risk R̂n(f).

115

ERM strategy

Framework

• F a collection of machines.

• Risk for a machine f : R(f) = E[`(Y , f (X))].

• Goal: select f̂ in F such that

R(f̂) ≈ inf
f ∈F
R(f).

ERM

• Estimate the risk of the machines in F (validation hold out, cross
validation...) =⇒ R̂n(f).

• Choose the machine f̂ which minimizes the estimated risk R̂n(f).

115

Selecting k (k-nn rule)

• Data splitting:
• A learning or train set Dm = {(X1,Y1), . . . , (Xm,Ym)};
• A test set D` = {(Xm+1,Ym+1), . . . , (Xn,Yn)} with m + ` = n.

• Candidates: Gm = {gk , 1 ≤ k ≤ m} → k-nn rules using Dm.

• Risk: L(g) = P(g(X) 6= Y).

ERM Strategy
Choose ĝn which minmizes

1
`

n∑
i=m+1

1gk (Xi)6=Yi
.

116

Selecting k (k-nn rule)

• Data splitting:
• A learning or train set Dm = {(X1,Y1), . . . , (Xm,Ym)};
• A test set D` = {(Xm+1,Ym+1), . . . , (Xn,Yn)} with m + ` = n.

• Candidates: Gm = {gk , 1 ≤ k ≤ m} → k-nn rules using Dm.

• Risk: L(g) = P(g(X) 6= Y).

ERM Strategy
Choose ĝn which minmizes

1
`

n∑
i=m+1

1gk (Xi)6=Yi
.

116

Outline
1. Some parametric methods

Linear and logistic models

Linear discriminant analysis

Just one explanatory variable

LDA: general case

2. Some nonparametric methods

Kernel and nearest neighbors methods

The curse of dimensionality
3. Empirical risk minimization

Setting

Caret package
4. Bibliography

117

• Classification and regression training.

• This package allows to select machines and to estimate their
performances.

• More than 230 algorithms are available on caret:
http://topepo.github.io/caret/index.html

• We just have to specify:
• the method (logistic, k-nn, trees, randomForest...)
• a grid for the values of parameters (number of NN...)
• the risk or the cost function (error probability, AUC, quadratic risk...)
• how to estimate the risk (validation hold out, cross validation,

bootstrap...).

118

http://topepo.github.io/caret/index.html

• Classification and regression training.

• This package allows to select machines and to estimate their
performances.

• More than 230 algorithms are available on caret:
http://topepo.github.io/caret/index.html

• We just have to specify:
• the method (logistic, k-nn, trees, randomForest...)
• a grid for the values of parameters (number of NN...)
• the risk or the cost function (error probability, AUC, quadratic risk...)
• how to estimate the risk (validation hold out, cross validation,

bootstrap...).

118

http://topepo.github.io/caret/index.html

Validation hold out i

> K_cand <- seq(1,500,by=20)
> library(caret)
> ctrl1 <- trainControl(method="LGOCV",number=1,index=list(1:1500))
> KK <- data.frame(k=K_cand)
> e1 <- train(Y~.,data=donnees,method="knn",trControl=ctrl1,tuneGrid=KK)
> e1
k-Nearest Neighbors

2000 samples
2 predictor
2 classes: ’0’, ’1’

No pre-processing
Resampling: Repeated Train/Test Splits Estimated (1 reps, 75%)
Summary of sample sizes: 1500
Resampling results across tuning parameters:

k Accuracy Kappa

119

Validation hold out ii

1 0.620 0.2382571
21 0.718 0.4342076
41 0.722 0.4418388
61 0.718 0.4344073
81 0.720 0.4383195

101 0.714 0.4263847
121 0.716 0.4304965
141 0.718 0.4348063
161 0.718 0.4348063
181 0.718 0.4348063
201 0.720 0.4387158
221 0.718 0.4350056
241 0.718 0.4350056
261 0.722 0.4428232
281 0.714 0.4267894
301 0.714 0.4269915
321 0.710 0.4183621
341 0.696 0.3893130

120

Validation hold out iii

361 0.696 0.3893130
381 0.690 0.3767090
401 0.684 0.3645329
421 0.686 0.3686666
441 0.686 0.3679956
461 0.684 0.3638574
481 0.680 0.3558050

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was k = 261.
> plot(e1)

121

Validation hold out iv

#Neighbors

Ac
cu

ra
cy

 (R
ep

ea
ted

 Tr
ain

/Te
st

Sp
lits

)

0.62

0.64

0.66

0.68

0.70

0.72

0 100 200 300 400 500

●

●

●

●
●

●
●

● ● ●
●

● ●

●

● ●

●

● ●

●

●
● ●

●

●

122

Cross validation i

> library(doMC)
> registerDoMC(cores = 3)
> ctrl2 <- trainControl(method="cv",number=10)
> e2 <- train(Y~.,data=dapp,method="knn",trControl=ctrl2,tuneGrid=KK)
> e2
k-Nearest Neighbors

1500 samples
2 predictor
2 classes: ’0’, ’1’

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 1350, 1350, 1350, 1350, 1350, 1350, ...
Resampling results across tuning parameters:

k Accuracy Kappa

123

Cross validation ii

1 0.6280000 0.2519051
21 0.7333333 0.4623213
41 0.7273333 0.4503384
61 0.7360000 0.4682891
81 0.7353333 0.4673827

101 0.7313333 0.4596395
121 0.7306667 0.4584747
141 0.7366667 0.4703653
161 0.7340000 0.4654675
181 0.7306667 0.4585136
201 0.7313333 0.4597224
221 0.7333333 0.4638243
241 0.7333333 0.4637789
261 0.7306667 0.4581189
281 0.7320000 0.4604955
301 0.7246667 0.4452185
321 0.7166667 0.4283226
341 0.7120000 0.4183438

124

Cross validation iii

361 0.7086667 0.4109784
381 0.7093333 0.4121146
401 0.7093333 0.4117108
421 0.7066667 0.4057889
441 0.7066667 0.4047529
461 0.6940000 0.3782209
481 0.6886667 0.3662798

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was k = 141.

> plot(e2)

125

Cross validation iv

#Neighbors

Ac
cu

ra
cy

 (C
ro

ss
−V

ali
da

tio
n)

0.64

0.66

0.68

0.70

0.72

0.74

0 100 200 300 400 500

●

●

●

● ●

● ●

●

●

● ●
● ●

●
●

●

●

●

● ● ●

● ●

●

●

126

Repeated cross-validation i

> ctrl3 <- trainControl(method="repeatedcv",repeats=5,number=10)
> e3 <- train(Y~.,data=dapp,method="knn",trControl=ctrl3,tuneGrid=KK)
> e3
k-Nearest Neighbors

1500 samples
2 predictor
2 classes: ’0’, ’1’

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 1350, 1350, 1350, 1350, 1350, 1350, ...
Resampling results across tuning parameters:

k Accuracy Kappa
1 0.6222667 0.2416680

21 0.7352000 0.4661220

127

Repeated cross-validation ii

41 0.7312000 0.4580125
61 0.7310667 0.4580882
81 0.7321333 0.4606022

101 0.7329333 0.4626718
121 0.7326667 0.4623496
141 0.7328000 0.4628236
161 0.7345333 0.4663240
181 0.7344000 0.4660110
201 0.7322667 0.4616271
221 0.7324000 0.4619926
241 0.7326667 0.4624912
261 0.7310667 0.4591799
281 0.7282667 0.4530797
301 0.7248000 0.4454653
321 0.7170667 0.4292033
341 0.7118667 0.4181330
361 0.7112000 0.4163210
381 0.7109333 0.4154893

128

Repeated cross-validation iii

401 0.7086667 0.4104291
421 0.7058667 0.4043432
441 0.7026667 0.3972028
461 0.6953333 0.3813444
481 0.6886667 0.3664347

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was k = 21.

> plot(e3)

129

Repeated cross-validation iv

#Neighbors

Ac
cu

ra
cy

 (R
ep

ea
ted

 C
ro

ss
−V

ali
da

tio
n)

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0 100 200 300 400 500

●

●

● ●
● ● ● ●

● ●
● ● ●

●

●

●

●

● ● ●
●

●

●

●

●

130

Minimizing AUC i

> donnees1 <- donnees
> names(donnees1)[3] <- c("Class")
> levels(donnees1$Class) <- c("G0","G1")
> ctrl11 <- trainControl(method="LGOCV",number=1,index=list(1:1500),

classProbs=TRUE,summary=twoClassSummary)
> e4 <- train(Class~.,data=donnees1,method="knn",trControl=ctrl11,

metric="ROC",tuneGrid=KK)
> e4
k-Nearest Neighbors

2000 samples
2 predictor
2 classes: ’G0’, ’G1’

No pre-processing
Resampling: Repeated Train/Test Splits Estimated (1 reps, 75%)
Summary of sample sizes: 1500

131

Minimizing AUC ii

Resampling results across tuning parameters:

k ROC Sens Spec
1 0.6190866 0.5983264 0.6398467

21 0.7171484 0.6903766 0.7432950
41 0.7229757 0.6861925 0.7547893
61 0.7200500 0.6945607 0.7394636
81 0.7255567 0.6945607 0.7432950

101 0.7319450 0.6903766 0.7356322
121 0.7382452 0.6945607 0.7356322
141 0.7353757 0.7029289 0.7318008
161 0.7308549 0.7029289 0.7318008
181 0.7351272 0.7029289 0.7318008
201 0.7340050 0.7029289 0.7356322
221 0.7324099 0.7071130 0.7279693
241 0.7349028 0.7071130 0.7279693
261 0.7365780 0.7071130 0.7356322
281 0.7349749 0.6987448 0.7279693

132

Minimizing AUC iii

301 0.7356963 0.7029289 0.7241379
321 0.7341493 0.6861925 0.7318008
341 0.7343898 0.6527197 0.7356322
361 0.7306385 0.6527197 0.7356322
381 0.7301816 0.6359833 0.7394636
401 0.7270957 0.6276151 0.7356322
421 0.7255487 0.6317992 0.7356322
441 0.7258933 0.6192469 0.7471264
461 0.7220619 0.6150628 0.7471264
481 0.7236330 0.6108787 0.7432950

ROC was used to select the optimal model using the largest value.
The final value used for the model was k = 121.
> getTrainPerf(e4)

TrainROC TrainSens TrainSpec method
1 0.7382452 0.6945607 0.7356322 knn
> plot(e4)

133

Minimizing AUC iv

#Neighbors

RO
C

(R
ep

ea
ted

 Tr
ain

/Te
st

Sp
lits

)

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0 100 200 300 400 500

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

● ●

● ●

●
● ●

●
●

134

Summary

• Parametric: strong assumption but fast rates (1/n).

• Non parametric: less restrictive but slow rates plus curse of
dimensionality (1/n2/(d+2)).

• ERM strategy: select (automatically) parameters which minimizes the
estimated risk.

• Exercise 5, IML1.

135

Summary

• Parametric: strong assumption but fast rates (1/n).

• Non parametric: less restrictive but slow rates plus curse of
dimensionality (1/n2/(d+2)).

• ERM strategy: select (automatically) parameters which minimizes the
estimated risk.

• Exercise 5, IML1.

135

Summary

• Parametric: strong assumption but fast rates (1/n).

• Non parametric: less restrictive but slow rates plus curse of
dimensionality (1/n2/(d+2)).

• ERM strategy: select (automatically) parameters which minimizes the
estimated risk.

• Exercise 5, IML1.

135

Outline
1. Some parametric methods

Linear and logistic models

Linear discriminant analysis

Just one explanatory variable

LDA: general case

2. Some nonparametric methods

Kernel and nearest neighbors methods

The curse of dimensionality
3. Empirical risk minimization

Setting

Caret package
4. Bibliography

136

References i

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984).
Classification and regression trees.
Wadsworth & Brooks.

Cornillon, P. and Matzner-Løber, E. (2011).
Régression avec R.
Springer.

Devroye, L., Györfi, L., and Lugosi, G. (1996).
A Probabilistic Theory of Pattern Recognition.
Springer.

137

References ii

Devroye, L. and Krzyżak, A. (1989).
An equivalence theorem for l1 convergence of the kernel
regression estimate.
Journal of statistical Planning Inference, 23:71–82.

Fahrmeir, L. and Kaufmann, H. (1985).
Consistency and asymptotic normality of the maximum
likelihood estimator in generalized linear models.
The Annals of Statistics, 13:342–368.

Grob, J. (2003).
Linear regression.
Springer.

138

References iii

Györfi, L., Kohler, M., Krzyzak, A., and Harro, W. (2002).
A Distribution-Free Theory of Nonparametric Regression.
Springer.

Hastie, T., Tibshirani, R., and Friedman, J. (2009).
The Elements of Statistical Learning: Data Mining, Inference,
and Prediction.
Springer, second edition.

Stone, C. J. (1977).
Consistent nonparametric regression.
Annals of Statistics, 5:595–645.

139

Part III

Linear model: variable selection and
et regularization

140

Outline

1. Subset selection

2. Penalized regression

Ridge regression

Lasso regression

Supervised classification

3. Bibliography

141

Framework

• (X1,Y1), . . . , (Xn,Yn) i.i.d. observations with the same distribution as
(X ,Y) which takes values in X × Y;

• In this part, we assume X = Rd and Y = R or {−1, 1}.

Linear and logistic models

1. If Y = R,

m(x) = E[Y |X = x] = β0 + β1x1 + . . .+ βdxd = x tβ.

2. If Y = {−1, 1},

logit p(x) = β0 + β1x1 + . . .+ βdxd = x tβ

where p(x) = P(Y = 1|X = x).

142

Framework

• (X1,Y1), . . . , (Xn,Yn) i.i.d. observations with the same distribution as
(X ,Y) which takes values in X × Y;

• In this part, we assume X = Rd and Y = R or {−1, 1}.

Linear and logistic models

1. If Y = R,

m(x) = E[Y |X = x] = β0 + β1x1 + . . .+ βdxd = x tβ.

2. If Y = {−1, 1},

logit p(x) = β0 + β1x1 + . . .+ βdxd = x tβ

where p(x) = P(Y = 1|X = x).

142

Some limits

• 2 drawbacks in some situations:

1. prediction accuracy: LS and ML estimates can have large variance
(especially when d is large) and thus poor prediction accuracy.

2. interpretation: when d is large, we don’t know what are the most
important variables.

Goals

• Since we have more and more data, these drawbacks are occurring
more and more often.

• We need to develop new automatic procedures to select important
variables.

143

Some limits

• 2 drawbacks in some situations:

1. prediction accuracy: LS and ML estimates can have large variance
(especially when d is large) and thus poor prediction accuracy.

2. interpretation: when d is large, we don’t know what are the most
important variables.

Goals

• Since we have more and more data, these drawbacks are occurring
more and more often.

• We need to develop new automatic procedures to select important
variables.

143

Some limits

• 2 drawbacks in some situations:

1. prediction accuracy: LS and ML estimates can have large variance
(especially when d is large) and thus poor prediction accuracy.

2. interpretation: when d is large, we don’t know what are the most
important variables.

Goals

• Since we have more and more data, these drawbacks are occurring
more and more often.

• We need to develop new automatic procedures to select important
variables.

143

Some limits

• 2 drawbacks in some situations:

1. prediction accuracy: LS and ML estimates can have large variance
(especially when d is large) and thus poor prediction accuracy.

2. interpretation: when d is large, we don’t know what are the most
important variables.

Goals

• Since we have more and more data, these drawbacks are occurring
more and more often.

• We need to develop new automatic procedures to select important
variables.

143

An example

• We generate observations (xi , yi), i = 1, . . . , 500 according to

Y = 1X1 + 0X2 + . . .+ 0Xq+1 + ε

where X2,Xq+1, . . . , ε are i.i.d. with law N (0, 1).

• We compute the LS estimator of β1 for 1000 replications. We draw
boxplot of these estimators for q = 10 and q = 400.

q=10 q=400

0.7
0.8

0.9
1.0

1.1
1.2

Conclusion
Large variance (thus loss of accuracy) when the number of unnecessary
variables increases.

144

An example

• We generate observations (xi , yi), i = 1, . . . , 500 according to

Y = 1X1 + 0X2 + . . .+ 0Xq+1 + ε

where X2,Xq+1, . . . , ε are i.i.d. with law N (0, 1).
• We compute the LS estimator of β1 for 1000 replications. We draw

boxplot of these estimators for q = 10 and q = 400.

q=10 q=400

0.7
0.8

0.9
1.0

1.1
1.2

Conclusion
Large variance (thus loss of accuracy) when the number of unnecessary
variables increases.

144

An example

• We generate observations (xi , yi), i = 1, . . . , 500 according to

Y = 1X1 + 0X2 + . . .+ 0Xq+1 + ε

where X2,Xq+1, . . . , ε are i.i.d. with law N (0, 1).
• We compute the LS estimator of β1 for 1000 replications. We draw

boxplot of these estimators for q = 10 and q = 400.

q=10 q=400

0.7
0.8

0.9
1.0

1.1
1.2

Conclusion
Large variance (thus loss of accuracy) when the number of unnecessary
variables increases. 144

Size of the model

Test error

OVERFITTING

Train error

Complexity (λ)

Conclusion
The size of the model governs the bias/variance trade-off.

145

Size of the model

Test error

OVERFITTING

Train error

Complexity (λ)

Conclusion
The size of the model governs the bias/variance trade-off. 145

Outline

1. Subset selection

2. Penalized regression

Ridge regression

Lasso regression

Supervised classification

3. Bibliography

146

Best subset selection

• (X1,Y1), . . . , (Xn,Yn) i.i.d. with the same law as (X ,Y) which takes
values in Rd × R;

• d input variables =⇒

2d candidate models.

The idea

1. Fit the 2d models;

2. Choose the one which optimizes a given criterion.

Algorithm : best subset selection

1. for k = 0, . . . , d :

1.1 Fit the

(
d

k

)
linear models with k variables;

1.2 Choose the model with the higher R2. DenoteMk this model.

2. Select, amongM0,M1, . . . ,Md , the best model according to a given
criterion.

147

Best subset selection

• (X1,Y1), . . . , (Xn,Yn) i.i.d. with the same law as (X ,Y) which takes
values in Rd × R;

• d input variables =⇒ 2d candidate models.

The idea

1. Fit the 2d models;

2. Choose the one which optimizes a given criterion.

Algorithm : best subset selection

1. for k = 0, . . . , d :

1.1 Fit the

(
d

k

)
linear models with k variables;

1.2 Choose the model with the higher R2. DenoteMk this model.

2. Select, amongM0,M1, . . . ,Md , the best model according to a given
criterion.

147

Best subset selection

• (X1,Y1), . . . , (Xn,Yn) i.i.d. with the same law as (X ,Y) which takes
values in Rd × R;

• d input variables =⇒ 2d candidate models.

The idea

1. Fit the 2d models;

2. Choose the one which optimizes a given criterion.

Algorithm : best subset selection

1. for k = 0, . . . , d :

1.1 Fit the

(
d

k

)
linear models with k variables;

1.2 Choose the model with the higher R2. DenoteMk this model.

2. Select, amongM0,M1, . . . ,Md , the best model according to a given
criterion.

147

Best subset selection

• (X1,Y1), . . . , (Xn,Yn) i.i.d. with the same law as (X ,Y) which takes
values in Rd × R;

• d input variables =⇒ 2d candidate models.

The idea

1. Fit the 2d models;

2. Choose the one which optimizes a given criterion.

Algorithm : best subset selection

1. for k = 0, . . . , d :

1.1 Fit the

(
d

k

)
linear models with k variables;

1.2 Choose the model with the higher R2. DenoteMk this model.

2. Select, amongM0,M1, . . . ,Md , the best model according to a given
criterion. 147

Some criteria

• AIC: Akaike Information Criterion

−2Ln(β̂) + 2d .

• BIC: Bayesian Information Criterion

−2Ln(β̂) + log(n)d .

• Adjusted R2:

R2
a = 1− n − 1

n − d + 1
(1− R2) where R2 =

SSR

SST
=
‖Ŷ− Ȳ1‖2

‖Y− Ȳ1‖2
.

• Mallows’s Cp:

Cp =
1
n

(
n∑

i=1

(Yi − Ŷi)
2 + 2d σ̂2

)
.

148

R user

• regsubsets from leaps package allows to make best subset selection.

> library(leaps)
> reg.fit <- regsubsets(V4~V5+V6+V7+V8+V9+V10+V11+V12+V13,data=Ozone)
> summary(reg.fit)
1 subsets of each size up to 8
Selection Algorithm: exhaustive

V5 V6 V7 V8 V9 V10 V11 V12 V13
1 (1) " " " " " " "*" " " " " " " " " " "
2 (1) " " " " "*" " " "*" " " " " " " " "
3 (1) " " " " "*" " " "*" "*" " " " " " "
4 (1) " " " " "*" "*" "*" "*" " " " " " "
5 (1) "*" " " "*" "*" "*" "*" " " " " " "
6 (1) "*" " " "*" "*" "*" "*" " " "*" " "
7 (1) "*" " " "*" "*" "*" "*" " " "*" "*"
8 (1) "*" " " "*" "*" "*" "*" "*" "*" "*"

149

> plot(reg.fit,scale="Cp")
> plot(reg.fit,scale="bic")

Cp

(In
ter

cep
t) V5 V6 V7 V8 V9 V1
0

V1
1

V1
2

V1
3

73

16

13

8.9

8

6.1

4.9

4.6

bic

(In
ter

cep
t) V5 V6 V7 V8 V9 V1
0

V1
1

V1
2

V1
3

−170

−210

−210

−220

−220

−220

−220

−220

• Mallows’s Cp selects:

Y = β0 + β1V5 + β2V7 + β3V8 + β4V9 + β5V10 + β6V12 + ε.

• BIC selects:

Y = β0 + β1V5 + β2V7 + β3V8 + β4V9 + β5V10 + ε.

150

> plot(reg.fit,scale="Cp")
> plot(reg.fit,scale="bic")

Cp

(In
ter

cep
t) V5 V6 V7 V8 V9 V1
0

V1
1

V1
2

V1
3

73

16

13

8.9

8

6.1

4.9

4.6

bic

(In
ter

cep
t) V5 V6 V7 V8 V9 V1
0

V1
1

V1
2

V1
3

−170

−210

−210

−220

−220

−220

−220

−220

• Mallows’s Cp selects:

Y = β0 + β1V5 + β2V7 + β3V8 + β4V9 + β5V10 + β6V12 + ε.

• BIC selects:

Y = β0 + β1V5 + β2V7 + β3V8 + β4V9 + β5V10 + ε.

150

Stepwise selection

• BSS considers all models (advantage).

• Drawback: it becomes infeasible (too long computational time) when
d is large (d ≥ 40).

• When d is large, we can seek a good path through all possible subsets.

• Stepwise selection procedures define recursive models by adding or
deleting one variable at each step.

151

Stepwise selection

• BSS considers all models (advantage).

• Drawback: it becomes infeasible (too long computational time) when
d is large (d ≥ 40).

• When d is large, we can seek a good path through all possible subsets.

• Stepwise selection procedures define recursive models by adding or
deleting one variable at each step.

151

Stepwise selection

• BSS considers all models (advantage).

• Drawback: it becomes infeasible (too long computational time) when
d is large (d ≥ 40).

• When d is large, we can seek a good path through all possible subsets.

• Stepwise selection procedures define recursive models by adding or
deleting one variable at each step.

151

Stepwise selection

• BSS considers all models (advantage).

• Drawback: it becomes infeasible (too long computational time) when
d is large (d ≥ 40).

• When d is large, we can seek a good path through all possible subsets.

• Stepwise selection procedures define recursive models by adding or
deleting one variable at each step.

151

Forward stepwise selection

1. LetM0 the null model (only the intercept);

2. for k = 0, . . . , d − 1:
2.1 Define the d − k models by adding one variable inMk ;
2.2 Choose, among those d − k models, the one which maximizes the R2.

DenoteMk+1 this model.

3. Select, amongM0, . . . ,Md , the best model according to a given
criterion.

Backward stepwise selection

1. LetMd the full model (d variables);

2. For k = d , . . . , 1:
2.1 Define the k models by deleting one variable inMk ;
2.2 Choose, among those k models, the one which maximizes R2. Denote
Mk−1 this model.

3. Select, amongM0, . . . ,Md , the best model according to a given
criterion.

152

Forward stepwise selection

1. LetM0 the null model (only the intercept);

2. for k = 0, . . . , d − 1:
2.1 Define the d − k models by adding one variable inMk ;
2.2 Choose, among those d − k models, the one which maximizes the R2.

DenoteMk+1 this model.

3. Select, amongM0, . . . ,Md , the best model according to a given
criterion.

Backward stepwise selection

1. LetMd the full model (d variables);

2. For k = d , . . . , 1:
2.1 Define the k models by deleting one variable inMk ;
2.2 Choose, among those k models, the one which maximizes R2. Denote
Mk−1 this model.

3. Select, amongM0, . . . ,Md , the best model according to a given
criterion. 152

R user

• We just have to add the argument method="forward" or
method="backward" in regsubsets to make subset selection.

> reg.fit.for <- regsubsets(V4~V5+V6+V7+V8+V9+V10+V11+V12+V13,data=Ozone,
method="forward")

> reg.fit.back <- regsubsets(V4~V5+V6+V7+V8+V9+V10+V11+V12+V13,data=Ozone,
method="backward")

> summary(reg.fit.for)

V5 V6 V7 V8 V9 V10 V11 V12 V13
1 (1) " " " " " " "*" " " " " " " " " " "
2 (1) " " " " "*" "*" " " " " " " " " " "
3 (1) " " " " "*" "*" "*" " " " " " " " "
4 (1) " " " " "*" "*" "*" "*" " " " " " "
5 (1) "*" " " "*" "*" "*" "*" " " " " " "
6 (1) "*" " " "*" "*" "*" "*" " " "*" " "
7 (1) "*" " " "*" "*" "*" "*" " " "*" "*"
8 (1) "*" " " "*" "*" "*" "*" "*" "*" "*"

> summary(reg.fit.back)

V5 V6 V7 V8 V9 V10 V11 V12 V13
1 (1) " " " " " " " " "*" " " " " " " " "
2 (1) " " " " "*" " " "*" " " " " " " " "
3 (1) " " " " "*" " " "*" "*" " " " " " "
4 (1) " " " " "*" "*" "*" "*" " " " " " "
5 (1) "*" " " "*" "*" "*" "*" " " " " " "
6 (1) "*" " " "*" "*" "*" "*" " " "*" " "
7 (1) "*" " " "*" "*" "*" "*" " " "*" "*"
8 (1) "*" " " "*" "*" "*" "*" "*" "*" "*"

153

> plot(reg.fit.for,scale="bic")
> plot(reg.fit.back,scale="bic")

bic

(In
ter

cep
t) V5 V6 V7 V8 V9 V1
0

V1
1

V1
2

V1
3

−170

−200

−210

−210

−220

−220

−220

−220

bic

(In
ter

cep
t) V5 V6 V7 V8 V9 V1
0

V1
1

V1
2

V1
3

−160

−210

−210

−220

−220

−220

−220

−220

Remark
For this example, forward and backward selection provide the same model
(it’s not always the case).

154

Binary classification

• Best subset and stepwise selection have been proposed for regression
(Y = R).

• These approaches are exactly the same for binary classification
(Y = {−1, 1}).

• With R, we can use:
• bestglm function from the bestglm package for best subset selection.
• step function for stepwise selection.

• Exercise 1-2, IML2.

155

Binary classification

• Best subset and stepwise selection have been proposed for regression
(Y = R).

• These approaches are exactly the same for binary classification
(Y = {−1, 1}).

• With R, we can use:
• bestglm function from the bestglm package for best subset selection.
• step function for stepwise selection.

• Exercise 1-2, IML2.

155

Binary classification

• Best subset and stepwise selection have been proposed for regression
(Y = R).

• These approaches are exactly the same for binary classification
(Y = {−1, 1}).

• With R, we can use:
• bestglm function from the bestglm package for best subset selection.
• step function for stepwise selection.

• Exercise 1-2, IML2.

155

Outline

1. Subset selection

2. Penalized regression

Ridge regression

Lasso regression

Supervised classification

3. Bibliography

156

• For large values of d , least square estimates in the linear model

Y = β1X1 + . . .+ βdXd + ε

often exhibits high variance (overfitting).

Penalized regression: the idea

• Constraint the values of the LS estimates to reduce the variance (even
if we increase the bias).

• How? By imposing a constraint on the size of the coefficients:

β̂pen = argmin
β

n∑
i=1

yi −
d∑

j=1

xijβj

2

subject to ‖β‖? ≤ t.

157

• For large values of d , least square estimates in the linear model

Y = β1X1 + . . .+ βdXd + ε

often exhibits high variance (overfitting).

Penalized regression: the idea

• Constraint the values of the LS estimates to reduce the variance (even
if we increase the bias).

• How? By imposing a constraint on the size of the coefficients:

β̂pen = argmin
β

n∑
i=1

yi −
d∑

j=1

xijβj

2

subject to ‖β‖? ≤ t.

157

• For large values of d , least square estimates in the linear model

Y = β1X1 + . . .+ βdXd + ε

often exhibits high variance (overfitting).

Penalized regression: the idea

• Constraint the values of the LS estimates to reduce the variance (even
if we increase the bias).

• How? By imposing a constraint on the size of the coefficients:

β̂pen = argmin
β

n∑
i=1

yi −
d∑

j=1

xijβj

2

subject to ‖β‖? ≤ t.

157

• For large values of d , least square estimates in the linear model

Y = β1X1 + . . .+ βdXd + ε

often exhibits high variance (overfitting).

Penalized regression: the idea

• Constraint the values of the LS estimates to reduce the variance (even
if we increase the bias).

• How? By imposing a constraint on the size of the coefficients:

β̂pen = argmin
β

n∑
i=1

yi −
d∑

j=1

xijβj

2

subject to ‖β‖? ≤ t.

157

Questions

• Which norm for the constraint?

• How should we select t?
• t small =⇒ strong constraint (β̂j ≈ 0) ;
• t large =⇒ small constraint (β̂j ≈ β̂j,LS).

158

Questions

• Which norm for the constraint?

• How should we select t?
• t small =⇒

strong constraint (β̂j ≈ 0) ;
• t large =⇒ small constraint (β̂j ≈ β̂j,LS).

158

Questions

• Which norm for the constraint?

• How should we select t?
• t small =⇒ strong constraint (β̂j ≈ 0) ;
• t large =⇒ small constraint (β̂j ≈ β̂j,LS).

158

Outline

1. Subset selection

2. Penalized regression

Ridge regression

Lasso regression

Supervised classification

3. Bibliography

159

• Ridge regression shrinks the regression coefficients by constraining the
euclidean norm of the parameters.

Definition

1. Ridge estimates β̂R minimize

n∑
i=1

yi − β0 −
d∑

j=1

xijβj

2

subject to
d∑

j=1

β2j ≤ t (2)

2. or equivalently by imposing a penalty on the size of the coefficients

β̂R = argmin
β

n∑

i=1

yi − β0 −
d∑

j=1

xijβj

2

+ λ
d∑

j=1

β2j

 . (3)

160

• Ridge regression shrinks the regression coefficients by constraining the
euclidean norm of the parameters.

Definition

1. Ridge estimates β̂R minimize

n∑
i=1

yi − β0 −
d∑

j=1

xijβj

2

subject to
d∑

j=1

β2j ≤ t (2)

2. or equivalently by imposing a penalty on the size of the coefficients

β̂R = argmin
β

n∑

i=1

yi − β0 −
d∑

j=1

xijβj

2

+ λ
d∑

j=1

β2j

 . (3)

160

• Ridge regression shrinks the regression coefficients by constraining the
euclidean norm of the parameters.

Definition

1. Ridge estimates β̂R minimize

n∑
i=1

yi − β0 −
d∑

j=1

xijβj

2

subject to
d∑

j=1

β2j ≤ t (2)

2. or equivalently by imposing a penalty on the size of the coefficients

β̂R = argmin
β

n∑

i=1

yi − β0 −
d∑

j=1

xijβj

2

+ λ

d∑
j=1

β2j

 . (3)

160

Some remarks

• (2) are (3) the same in the sense that there is a one-to-one
correspondence between t and λ.

• Ridge estimate depends on t (or λ) : β̂R = β̂R(t) = β̂R(λ).

• Input variables are generally standardized to make the variables at the
same scale (it is automatic in classical softwares).

161

Some remarks

• (2) are (3) the same in the sense that there is a one-to-one
correspondence between t and λ.

• Ridge estimate depends on t (or λ) : β̂R = β̂R(t) = β̂R(λ).

• Input variables are generally standardized to make the variables at the
same scale (it is automatic in classical softwares).

161

Some remarks

• (2) are (3) the same in the sense that there is a one-to-one
correspondence between t and λ.

• Ridge estimate depends on t (or λ) : β̂R = β̂R(t) = β̂R(λ).

• Input variables are generally standardized to make the variables at the
same scale (it is automatic in classical softwares).

161

An example

• The problem: explain the level of prostate specific antigen by a
number (8) of clinical measures.

• n = 100 data available at
https://web.stanford.edu/~hastie/ElemStatLearn/

• Package glmnet allows to make ridge regression on R.

162

https://web.stanford.edu/~hastie/ElemStatLearn/

An example

• The problem: explain the level of prostate specific antigen by a
number (8) of clinical measures.

• n = 100 data available at
https://web.stanford.edu/~hastie/ElemStatLearn/

• Package glmnet allows to make ridge regression on R.

162

https://web.stanford.edu/~hastie/ElemStatLearn/

UseR

> reg.ridge <- glmnet(prostate.data2[,2:9],prostate.data2[,10],alpha=0)
> plot(reg.ridge,label=TRUE)
> plot(reg.ridge,xvar="lambda",label=TRUE,lwd=2)

0.0 0.4 0.8 1.2

−0
.1

0.0
0.1

0.2
0.3

0.4
0.5

L1 Norm

Co
eff

icie
nts

8 8 8 8 8 8 8 8

1

2

3

4

5

6

7

8

−2 0 2 4 6

−0
.1

0.0
0.1

0.2
0.3

0.4
0.5

Log Lambda

Co
eff

icie
nts

8 8 8 8 8

1

2

3

4

5

6

7

8

163

Some properties of ridge estimates

Proposition

1. Solution of (3) is given by

β̂R = β̂R(λ) = (XtX + λI)−1XtY.

2. It follows that
bias (β̂R) = −λ(XtX + λI)−1β

and
V(β̂R) = σ2(XtX + λI)−1XtX(XtX + λI)−1.

Remarks

• For λ = 0, we obtain LS estimates.

• λ↗ =⇒ bias ↗ and variance ↘ and conversely as λ↘.

164

Some properties of ridge estimates

Proposition

1. Solution of (3) is given by

β̂R = β̂R(λ) = (XtX + λI)−1XtY.

2. It follows that
bias (β̂R) = −λ(XtX + λI)−1β

and
V(β̂R) = σ2(XtX + λI)−1XtX(XtX + λI)−1.

Remarks

• For λ = 0, we obtain LS estimates.

• λ↗ =⇒ bias ↗ and variance ↘ and conversely as λ↘.

164

Choice of λ

• This choice of λ reveals crucial for the performance: if λ ≈ 0 then
β̂R ≈ β̂MCO , if λ "large" then β̂R ≈ 0.

• The procedure to select λ is usual:

1. Estimation of a criterion for a grid of λ;

2. We choose the value of λ which minimizes the estimated criterion.

• Example: cv.glmnet selects the value of λ which minimizes the
quadratic risk:

E[(Y − X t β̂R(λ))2]

estimated by cross validation.

165

Choice of λ

• This choice of λ reveals crucial for the performance: if λ ≈ 0 then
β̂R ≈ β̂MCO , if λ "large" then β̂R ≈ 0.

• The procedure to select λ is usual:

1. Estimation of a criterion for a grid of λ;

2. We choose the value of λ which minimizes the estimated criterion.

• Example: cv.glmnet selects the value of λ which minimizes the
quadratic risk:

E[(Y − X t β̂R(λ))2]

estimated by cross validation.

165

Choice of λ

• This choice of λ reveals crucial for the performance: if λ ≈ 0 then
β̂R ≈ β̂MCO , if λ "large" then β̂R ≈ 0.

• The procedure to select λ is usual:

1. Estimation of a criterion for a grid of λ;

2. We choose the value of λ which minimizes the estimated criterion.

• Example: cv.glmnet selects the value of λ which minimizes the
quadratic risk:

E[(Y − X t β̂R(λ))2]

estimated by cross validation.

165

Choice of λ

• This choice of λ reveals crucial for the performance: if λ ≈ 0 then
β̂R ≈ β̂MCO , if λ "large" then β̂R ≈ 0.

• The procedure to select λ is usual:

1. Estimation of a criterion for a grid of λ;

2. We choose the value of λ which minimizes the estimated criterion.

• Example: cv.glmnet selects the value of λ which minimizes the
quadratic risk:

E[(Y − X t β̂R(λ))2]

estimated by cross validation.

165

> reg.cvridge <- cv.glmnet(prostate.data2[,2:9],prostate.data2[,10],alpha=0)
> bestlam <- reg.cvridge$lambda.min
> bestlam
[1] 0.1060069
> plot(reg.cvridge)

−2 0 2 4 6

0.4
0.6

0.8
1.0

log(Lambda)

Me
an

−S
qu

are
d E

rro
r

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

166

Outline

1. Subset selection

2. Penalized regression

Ridge regression

Lasso regression

Supervised classification

3. Bibliography

167

• Lasso regression shrinks the regression coefficients by constraining the
L1 norm of the parameters.

Definition [Tibshirani, 1996]

1. Lasso estimates β̂L minimize

n∑
i=1

Yi − β0 −
d∑

j=1

Xijβj

2

subject to
d∑

j=1

|βj | ≤ t (4)

2. or equivalently by imposing a penalty on the size of the coefficients

β̂L = argmin
β

n∑

i=1

Yi − β0 −
d∑

j=1

Xijβj

2

+ λ
d∑

j=1

|βj |

 . (5)

168

• Lasso regression shrinks the regression coefficients by constraining the
L1 norm of the parameters.

Definition [Tibshirani, 1996]

1. Lasso estimates β̂L minimize

n∑
i=1

Yi − β0 −
d∑

j=1

Xijβj

2

subject to
d∑

j=1

|βj | ≤ t (4)

2. or equivalently by imposing a penalty on the size of the coefficients

β̂L = argmin
β

n∑

i=1

Yi − β0 −
d∑

j=1

Xijβj

2

+ λ
d∑

j=1

|βj |

 . (5)

168

• Lasso regression shrinks the regression coefficients by constraining the
L1 norm of the parameters.

Definition [Tibshirani, 1996]

1. Lasso estimates β̂L minimize

n∑
i=1

Yi − β0 −
d∑

j=1

Xijβj

2

subject to
d∑

j=1

|βj | ≤ t (4)

2. or equivalently by imposing a penalty on the size of the coefficients

β̂L = argmin
β

n∑

i=1

Yi − β0 −
d∑

j=1

Xijβj

2

+ λ

d∑
j=1

|βj |

 . (5)

168

Comparison Ridge-Lasso

• If X is an orthonormal input matrix, we have an explicit solution for
ridge and lasso.

Proposition
If X is orthonormal, then

β̂Rj =
β̂j

1 + λ
and β̂Lj =

sign(β̂j)(|β̂j | − λ) if |β̂j | ≥ λ

0 otherwise.

where β̂j is the LS of βj .

Comments

• Ridge does a proportional shrinkage;

• Lasso translates each coefficient by a factor λ, truncating at 0 (when it
is small).

169

Comparison Ridge-Lasso

• If X is an orthonormal input matrix, we have an explicit solution for
ridge and lasso.

Proposition
If X is orthonormal, then

β̂Rj =
β̂j

1 + λ
and β̂Lj =

sign(β̂j)(|β̂j | − λ) if |β̂j | ≥ λ

0 otherwise.

where β̂j is the LS of βj .

Comments

• Ridge does a proportional shrinkage;

• Lasso translates each coefficient by a factor λ, truncating at 0 (when it
is small).

169

Comparison Ridge-Lasso

• If X is an orthonormal input matrix, we have an explicit solution for
ridge and lasso.

Proposition
If X is orthonormal, then

β̂Rj =
β̂j

1 + λ
and β̂Lj =

sign(β̂j)(|β̂j | − λ) if |β̂j | ≥ λ

0 otherwise.

where β̂j is the LS of βj .

Comments

• Ridge does a proportional shrinkage;

• Lasso translates each coefficient by a factor λ, truncating at 0 (when it
is small).

169

Comparison Ridge-Lasso

• If X is an orthonormal input matrix, we have an explicit solution for
ridge and lasso.

Proposition
If X is orthonormal, then

β̂Rj =
β̂j

1 + λ
and β̂Lj =

sign(β̂j)(|β̂j | − λ) if |β̂j | ≥ λ

0 otherwise.

where β̂j is the LS of βj .

Comments

• Ridge does a proportional shrinkage;

• Lasso translates each coefficient by a factor λ, truncating at 0 (when it
is small).

169

LASSO

MCO

RIDGE

Conclusion
Lasso put small coefficients to 0 =⇒ variables with small coefficients are
excluded from the model.

170

β1

β2

β̂

β2

β̂

β1

Relationship between ridge and lasso
Both methods find the first point where the elliptical contours hit the
constraint region:

1. L2 for ridge and L1 norm for lasso.

2. The diamonds (L1) has corner =⇒ the constraint region is often hit at
a corner.

171

β1

β2

β̂

β2

β̂

β1

Relationship between ridge and lasso
Both methods find the first point where the elliptical contours hit the
constraint region:

1. L2 for ridge and L1 norm for lasso.

2. The diamonds (L1) has corner =⇒ the constraint region is often hit at
a corner.

171

Some remarks

• As for ridge:

• input variables X1, . . . ,Xd are generally standardized before the
analysis.

• λ↗ =⇒ bias ↗ and variance ↘ and reciprocally as λ↘.

• Choice of λ reveals crucial (minimization of an estimated criterion).

• BUT, unlike ridge: λ↗ =⇒ some estimated parameters equal 0 for
lasso ([Bühlmann and van de Geer, 2011]).

172

Some remarks

• As for ridge:

• input variables X1, . . . ,Xd are generally standardized before the
analysis.

• λ↗ =⇒ bias ↗ and variance ↘ and reciprocally as λ↘.

• Choice of λ reveals crucial (minimization of an estimated criterion).

• BUT, unlike ridge: λ↗ =⇒ some estimated parameters equal 0 for
lasso ([Bühlmann and van de Geer, 2011]).

172

Some remarks

• As for ridge:

• input variables X1, . . . ,Xd are generally standardized before the
analysis.

• λ↗ =⇒ bias ↗ and variance ↘ and reciprocally as λ↘.

• Choice of λ reveals crucial (minimization of an estimated criterion).

• BUT, unlike ridge: λ↗ =⇒ some estimated parameters equal 0 for
lasso ([Bühlmann and van de Geer, 2011]).

172

Some remarks

• As for ridge:

• input variables X1, . . . ,Xd are generally standardized before the
analysis.

• λ↗ =⇒ bias ↗ and variance ↘ and reciprocally as λ↘.

• Choice of λ reveals crucial (minimization of an estimated criterion).

• BUT, unlike ridge: λ↗ =⇒ some estimated parameters equal 0 for
lasso ([Bühlmann and van de Geer, 2011]).

172

UseR

> reg.lasso <- glmnet(prostate.data2[,2:9],prostate.data2[,10],alpha=1)
> plot(reg.lasso,label=TRUE)
> plot(reg.lasso,xvar="lambda",label=TRUE,lwd=2)

0.0 0.5 1.0 1.5

−0
.1

0.0
0.1

0.2
0.3

0.4
0.5

0.6

L1 Norm

Co
eff

icie
nts

0 3 6 8

1

2

3

4

5

6

7

8

−6 −4 −2

−0
.1

0.0
0.1

0.2
0.3

0.4
0.5

0.6

Log Lambda

Co
eff

icie
nts

8 8 8 6 3 2

1

2

3

4

5

6

7

8

173

Choice of λ

> reg.cvlasso <- cv.glmnet(prostate.data2[,2:9],prostate.data2[,10],alpha=1)
> bestlam <- reg.cvlasso$lambda.min
> bestlam
[1] 0.02815637
> plot(reg.cvlasso)

−6 −5 −4 −3 −2 −1

0.4
0.6

0.8
1.0

log(Lambda)

Me
an

−S
qu

are
d E

rro
r

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

8 8 8 8 8 8 8 8 8 8 7 7 6 6 5 5 5 3 3 3 2 1 1 0

174

Outline

1. Subset selection

2. Penalized regression

Ridge regression

Lasso regression

Supervised classification

3. Bibliography

175

Binary classification

• Ridge and lasso have been presented for regression.

• It is not difficult to adjust these methods to the logistic model
Y = {−1, 1}.

• Penalty terms are the same.

• Only change: least square criterion is replaced by likelihood.

176

Binary classification

• Ridge and lasso have been presented for regression.

• It is not difficult to adjust these methods to the logistic model
Y = {−1, 1}.

• Penalty terms are the same.

• Only change: least square criterion is replaced by likelihood.

176

Lasso and Ridge for logistic regression

Definition

Let ỹi = (yi + 1)/2 (ỹi = 0 or 1).

• Ridge estimates for logistic regression are defined by

β̂R = argmin
β

−
n∑

i=1

(ỹix
t
i β − log(1 + exp(x ti β))) + λ

d∑
j=1

β2j

 .

• Lasso estimates for logistic regression are defined by

β̂L = argmin
β

−
n∑

i=1

(ỹix
t
i β − log(1 + exp(x ti β))) + λ

d∑
j=1

|βj |

 .

177

UseR

• To make ridge or lasso for logistic regression, we just have to add
family=binomial in glmnet function.

• It is the only change (coefficient paths, choice of λ are the same...).

> colnames(donnees)
[1] "sbp" "tobacco" "ldl" "adiposity" "typea" "obesity"
[7] "alcohol" "age" "chd"
> log.ridge <- glmnet(donnees[,1:8],donnees[,9],family="binomial",alpha=0)
> log.lasso <- glmnet(donnees[,1:8],donnees[,9],family="binomial",alpha=1)
> plot(log.ridge,xvar="lambda")
> plot(log.lasso,xvar="lambda")

178

−4 −2 0 2 4

−0
.05

0.0
0

0.0
5

0.1
0

0.1
5

Log Lambda

Co
eff

ici
en

ts

8 8 8 8 8

−7 −6 −5 −4 −3 −2
−0

.05
0.0

0
0.0

5
0.1

0
0.1

5
0.2

0

Log Lambda

Co
eff

ici
en

ts

8 8 7 5 4 1

179

Elastic net

• [Zou and Hastie, 2005] have proposed to combine ridge and lasso with
the following penalty term (called elastic net penalty)

λ

d∑
j=1

((1− α)β2j + α|βj |)

where α ∈ [0, 1].

• α measures the trade-off ridge/lasso :
• α = 1 =⇒ Lasso;
• α = 0 =⇒ Ridge.
• This parameter corresponds (obviously) to the alpha parameter in

glmnet function.

• Advantage: more flexible since elastic net includes ridge and lasso.
• Drawback: we have to select both α and λ (you can use caret to do

that).

180

Elastic net

• [Zou and Hastie, 2005] have proposed to combine ridge and lasso with
the following penalty term (called elastic net penalty)

λ

d∑
j=1

((1− α)β2j + α|βj |)

where α ∈ [0, 1].

• α measures the trade-off ridge/lasso :
• α = 1 =⇒ Lasso;
• α = 0 =⇒ Ridge.

• This parameter corresponds (obviously) to the alpha parameter in
glmnet function.

• Advantage: more flexible since elastic net includes ridge and lasso.
• Drawback: we have to select both α and λ (you can use caret to do

that).

180

Elastic net

• [Zou and Hastie, 2005] have proposed to combine ridge and lasso with
the following penalty term (called elastic net penalty)

λ

d∑
j=1

((1− α)β2j + α|βj |)

where α ∈ [0, 1].

• α measures the trade-off ridge/lasso :
• α = 1 =⇒ Lasso;
• α = 0 =⇒ Ridge.
• This parameter corresponds (obviously) to the alpha parameter in

glmnet function.

• Advantage: more flexible since elastic net includes ridge and lasso.
• Drawback: we have to select both α and λ (you can use caret to do

that).

180

Elastic net

• [Zou and Hastie, 2005] have proposed to combine ridge and lasso with
the following penalty term (called elastic net penalty)

λ

d∑
j=1

((1− α)β2j + α|βj |)

where α ∈ [0, 1].

• α measures the trade-off ridge/lasso :
• α = 1 =⇒ Lasso;
• α = 0 =⇒ Ridge.
• This parameter corresponds (obviously) to the alpha parameter in

glmnet function.

• Advantage: more flexible since elastic net includes ridge and lasso.

• Drawback: we have to select both α and λ (you can use caret to do
that).

180

Elastic net

• [Zou and Hastie, 2005] have proposed to combine ridge and lasso with
the following penalty term (called elastic net penalty)

λ

d∑
j=1

((1− α)β2j + α|βj |)

where α ∈ [0, 1].

• α measures the trade-off ridge/lasso :
• α = 1 =⇒ Lasso;
• α = 0 =⇒ Ridge.
• This parameter corresponds (obviously) to the alpha parameter in

glmnet function.

• Advantage: more flexible since elastic net includes ridge and lasso.
• Drawback: we have to select both α and λ (you can use caret to do

that).

180

Summary

• LASSO and ridge regressions allow to make efficient linear models
when the classical linear model is defective:

• high correlations between inputs;
• high dimension (large number of inputs).

• When the linear model is efficient, we don’t need to use these
methods.

• Exercise 3-4, IML2.

181

Summary

• LASSO and ridge regressions allow to make efficient linear models
when the classical linear model is defective:

• high correlations between inputs;
• high dimension (large number of inputs).

• When the linear model is efficient, we don’t need to use these
methods.

• Exercise 3-4, IML2.

181

Summary

• LASSO and ridge regressions allow to make efficient linear models
when the classical linear model is defective:

• high correlations between inputs;
• high dimension (large number of inputs).

• When the linear model is efficient, we don’t need to use these
methods.

• Exercise 3-4, IML2.

181

Summary

• LASSO and ridge regressions allow to make efficient linear models
when the classical linear model is defective:

• high correlations between inputs;
• high dimension (large number of inputs).

• When the linear model is efficient, we don’t need to use these
methods.

• Exercise 3-4, IML2.

181

Outline

1. Subset selection

2. Penalized regression

Ridge regression

Lasso regression

Supervised classification

3. Bibliography

182

Références i

Bühlmann, P. and van de Geer, S. (2011).
Statistics for high-dimensional data.
Springer.

Hastie, T., Tibshirani, R., and Friedman, J. (2009).
The Elements of Statistical Learning: Data Mining, Inference,
and Prediction.
Springer, second edition.

Tibshirani, R. (1996).
Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society, Series B, 58:267–288.

183

Références ii

Zou, H. and Hastie, T. (2005).
Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society, Series B, 67:301–320.

184

Part IV

Trees

185

Outline

1. Binary trees

2. Choice of the split

Regression

Supervised classification

3. Pruning a tree

4. Appendix: pruning algorithm

5. Bibliography

186

Presentation

• Tree algorithms are statistical learning algorithms for both regression
and supervised classification.

• Popular method, not (too) difficult to understand, visualization tool.

• Tree algorithms are not generally the most performant algorithms...
but a lot of efficient algorithms are defined from trees (random forest,
gradient tree boosting...).

• There are different ways to build trees.

• We focus on the CART algorithm [Breiman et al., 1984] which is the
most widely used algorithm to define trees.

187

Presentation

• Tree algorithms are statistical learning algorithms for both regression
and supervised classification.

• Popular method, not (too) difficult to understand, visualization tool.

• Tree algorithms are not generally the most performant algorithms...

but a lot of efficient algorithms are defined from trees (random forest,
gradient tree boosting...).

• There are different ways to build trees.

• We focus on the CART algorithm [Breiman et al., 1984] which is the
most widely used algorithm to define trees.

187

Presentation

• Tree algorithms are statistical learning algorithms for both regression
and supervised classification.

• Popular method, not (too) difficult to understand, visualization tool.

• Tree algorithms are not generally the most performant algorithms...
but a lot of efficient algorithms are defined from trees (random forest,
gradient tree boosting...).

• There are different ways to build trees.

• We focus on the CART algorithm [Breiman et al., 1984] which is the
most widely used algorithm to define trees.

187

Presentation

• Tree algorithms are statistical learning algorithms for both regression
and supervised classification.

• Popular method, not (too) difficult to understand, visualization tool.

• Tree algorithms are not generally the most performant algorithms...
but a lot of efficient algorithms are defined from trees (random forest,
gradient tree boosting...).

• There are different ways to build trees.

• We focus on the CART algorithm [Breiman et al., 1984] which is the
most widely used algorithm to define trees.

187

Outline

1. Binary trees

2. Choice of the split

Regression

Supervised classification

3. Pruning a tree

4. Appendix: pruning algorithm

5. Bibliography

188

Notations

• The problem: explain output Y by p inputs X1, . . . ,Xp.

• Y might be categorical (binary or not) or continuous and X1, . . . ,Xp

categorical or continous.

• For simplicity (to make figures), we first assume that Y is binary (-1
ou 1) and that p = 2 (2 inputs X1 and X2 continuous).

189

Notations

• The problem: explain output Y by p inputs X1, . . . ,Xp.

• Y might be categorical (binary or not) or continuous and X1, . . . ,Xp

categorical or continous.

• For simplicity (to make figures), we first assume that Y is binary (-1
ou 1) and that p = 2 (2 inputs X1 and X2 continuous).

189

Notations

• The problem: explain output Y by p inputs X1, . . . ,Xp.

• Y might be categorical (binary or not) or continuous and X1, . . . ,Xp

categorical or continous.

• For simplicity (to make figures), we first assume that Y is binary (-1
ou 1) and that p = 2 (2 inputs X1 and X2 continuous).

189

Data visualization

• n observations (X1,Y1), . . . , (Xn,Yn) where Xi ∈ R2 and Yi ∈ {−1, 1}.

Tree partitions
Find a partition of the feature space into a set of rectangles which divides
points according to their color.

190

Data visualization

• n observations (X1,Y1), . . . , (Xn,Yn) where Xi ∈ R2 and Yi ∈ {−1, 1}.

Tree partitions
Find a partition of the feature space into a set of rectangles which divides
points according to their color.

190

Binary partitions

• CART algorithm restricts attention to recursive binary partitions.

• 2 examples:

191

• At each step, the method splits the data into two regions according to
a split variable and a split point.

192

• At each step, the method splits the data into two regions according to
a split variable and a split point.

s1

192

• At each step, the method splits the data into two regions according to
a split variable and a split point.

s1

s2

192

• At each step, the method splits the data into two regions according to
a split variable and a split point.

s1

s2

s3

192

• At each step, the method splits the data into two regions according to
a split variable and a split point.

s1

s2

s4

s3

192

A tree partition

s1

s2

s4

s3

X1 ≥ s1X1 < s1

X2 ≥ s2 X2 < s2

X1 < s3 X1 ≥ s3

X2 < s4 X2 ≥ s4

193

A tree partition

s1

s2

s4

s3

X1 ≥ s1X1 < s1

X2 ≥ s2 X2 < s2

X1 < s3 X1 ≥ s3

X2 < s4 X2 ≥ s4

Classification rule
At the end, we do a majority vote in each cell of the partition (in each
rectangle).

193

Definitions

Definitions

• Each elements of the partition are called terminal nodes.

• Rp (the first node) is the root node.

• Each split (each question) defines two child nodes, the left and right
child nodes.

Question

• Tree process is recursive: we just have to know how to split a node.

• How to define a good split (or find a good question)?

194

Definitions

Definitions

• Each elements of the partition are called terminal nodes.

• Rp (the first node) is the root node.

• Each split (each question) defines two child nodes, the left and right
child nodes.

Question

• Tree process is recursive: we just have to know how to split a node.

• How to define a good split (or find a good question)?

194

Definitions

Definitions

• Each elements of the partition are called terminal nodes.

• Rp (the first node) is the root node.

• Each split (each question) defines two child nodes, the left and right
child nodes.

Question

• Tree process is recursive: we just have to know how to split a node.

• How to define a good split (or find a good question)?

194

Outline

1. Binary trees

2. Choice of the split

Regression

Supervised classification

3. Pruning a tree

4. Appendix: pruning algorithm

5. Bibliography

195

Question
How to choose a split?

• At each step, we have to find (j , s) which split a node N into two
children nodes

N1(j , s) = {X ∈ N|Xj ≤ s} and N2(j , s) = {X ∈ N|Xj > s}.

• (j , s) is selected by minimizing a criterion which measures the impurity
of the two children nodes.

196

Question
How to choose a split?

• At each step, we have to find (j , s) which split a node N into two
children nodes

N1(j , s) = {X ∈ N|Xj ≤ s} and N2(j , s) = {X ∈ N|Xj > s}.

• (j , s) is selected by minimizing a criterion which measures the impurity
of the two children nodes.

196

Question
How to choose a split?

• At each step, we have to find (j , s) which split a node N into two
children nodes

N1(j , s) = {X ∈ N|Xj ≤ s} and N2(j , s) = {X ∈ N|Xj > s}.

• (j , s) is selected by minimizing a criterion which measures the impurity
of the two children nodes.

196

Impurity

• Impurity of a node should be
1. small when the node is homogeneous: values of Y are closed to each

other in the node.
2. large when the node is heterogeneous: values of Y are different from

each other in the node.

The idea

For a given impurity measure I, we choose the split (j , s) which minimizes

P(N1)I(N1(j , s)) + P(N2)I(N2(j , s))

where P(Nk) stands for the proportion of observations in Nk , k = 1, 2

197

Impurity

• Impurity of a node should be
1. small when the node is homogeneous: values of Y are closed to each

other in the node.
2. large when the node is heterogeneous: values of Y are different from

each other in the node.

The idea

For a given impurity measure I, we choose the split (j , s) which minimizes

P(N1)I(N1(j , s)) + P(N2)I(N2(j , s))

where P(Nk) stands for the proportion of observations in Nk , k = 1, 2

197

Outline

1. Binary trees

2. Choice of the split

Regression

Supervised classification

3. Pruning a tree

4. Appendix: pruning algorithm

5. Bibliography

198

• In regression (Y continuous), we usually use the variance to measure
the impurity in the node

I(N) =
1
|N |

∑
i :Xi∈N

(Yi − ȲN)2,

where ȲN is the mean of Yi in N .

Split for regression

At each step, we choose (j , s) which minimizes∑
Xi∈N1(j ,s)

(Yi − Ȳ1)2 +
∑

Xi∈N2(j ,s)

(Yi − Ȳ2)2

where Ȳk = 1
|Nk (j ,s)|

∑
Xi∈Nk (j ,s)

Yi , k = 1, 2.

199

• In regression (Y continuous), we usually use the variance to measure
the impurity in the node

I(N) =
1
|N |

∑
i :Xi∈N

(Yi − ȲN)2,

where ȲN is the mean of Yi in N .

Split for regression

At each step, we choose (j , s) which minimizes∑
Xi∈N1(j ,s)

(Yi − Ȳ1)2 +
∑

Xi∈N2(j ,s)

(Yi − Ȳ2)2

where Ȳk = 1
|Nk (j ,s)|

∑
Xi∈Nk (j ,s)

Yi , k = 1, 2.

199

Example
2

.
5

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
5

1
.
0

1
.
5

2
.
0

2
.
5

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
5

1
.
0

1
.
5

2
.
0

200

Example
2

.
5

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
5

1
.
0

1
.
5

2
.
0

2
.
5

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
5

1
.
0

1
.
5

2
.
0

200

Example
1

.
5

2
.
0

2
.
5

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
5

1
.
0

0,25 76,95

1
.
5

2
.
0

2
.
5

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
5

1
.
0

2,71

0.81

200

Example
1

.
5

2
.
0

2
.
5

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
5

1
.
0

0,25 76,95

1
.
5

2
.
0

2
.
5

0.0 0.2 0.4 0.6 0.8 1.0
0

.
0

0
.
5

1
.
0

2,71

0.81

Conclusion
We choose the right split.

200

Outline

1. Binary trees

2. Choice of the split

Regression

Supervised classification

3. Pruning a tree

4. Appendix: pruning algorithm

5. Bibliography

201

• Yi , i = 1, . . . , n take values in {1, . . . ,K}.

• We search an impurity function I such I(N) is
• small if one label appears in majority in N , if we can clearly

differentiate one label from the other;

• large otherwise.

Definition
Impurity of N is defined by

I(N) =
K∑
j=1

f (pj(N))

where

• pj(N) stands for the proportion of class j in N .

• f is a concave function [0, 1]→ R+ such that f (0) = f (1) = 0.

202

• Yi , i = 1, . . . , n take values in {1, . . . ,K}.

• We search an impurity function I such I(N) is
• small if one label appears in majority in N , if we can clearly

differentiate one label from the other;

• large otherwise.

Definition
Impurity of N is defined by

I(N) =
K∑
j=1

f (pj(N))

where

• pj(N) stands for the proportion of class j in N .

• f is a concave function [0, 1]→ R+ such that f (0) = f (1) = 0.

202

• Yi , i = 1, . . . , n take values in {1, . . . ,K}.

• We search an impurity function I such I(N) is
• small if one label appears in majority in N , if we can clearly

differentiate one label from the other;

• large otherwise.

Definition
Impurity of N is defined by

I(N) =
K∑
j=1

f (pj(N))

where

• pj(N) stands for the proportion of class j in N .

• f is a concave function [0, 1]→ R+ such that f (0) = f (1) = 0.

202

Examples of functions f

• If N is pur, we expect that I(N) = 0

=⇒ that’s why
f (0) = f (1) = 0.

• The two classical impurity functions are
1. Gini: f (p) = p(1− p) ;
2. Information: f (p) = −p log(p).

Binary case
We have

1. I(N) = 2p(1− p) for Gini

2. I(N) = −p log p − (1− p) log(1− p) for Information

where p stands for the proportion of 1 (or -1) in N .

203

Examples of functions f

• If N is pur, we expect that I(N) = 0 =⇒ that’s why
f (0) = f (1) = 0.

• The two classical impurity functions are
1. Gini: f (p) = p(1− p) ;
2. Information: f (p) = −p log(p).

Binary case
We have

1. I(N) = 2p(1− p) for Gini

2. I(N) = −p log p − (1− p) log(1− p) for Information

where p stands for the proportion of 1 (or -1) in N .

203

Examples of functions f

• If N is pur, we expect that I(N) = 0 =⇒ that’s why
f (0) = f (1) = 0.

• The two classical impurity functions are
1. Gini: f (p) = p(1− p) ;
2. Information: f (p) = −p log(p).

Binary case
We have

1. I(N) = 2p(1− p) for Gini

2. I(N) = −p log p − (1− p) log(1− p) for Information

where p stands for the proportion of 1 (or -1) in N .

203

Examples of functions f

• If N is pur, we expect that I(N) = 0 =⇒ that’s why
f (0) = f (1) = 0.

• The two classical impurity functions are
1. Gini: f (p) = p(1− p) ;
2. Information: f (p) = −p log(p).

Binary case
We have

1. I(N) = 2p(1− p) for Gini

2. I(N) = −p log p − (1− p) log(1− p) for Information

where p stands for the proportion of 1 (or -1) in N .

203

0.0

0.2

0.4

0.6

0.00 0.25 0.50 0.75 1.00
p

im
pu

re
te indice

gini

information

204

Split for supervised classification

• Recall that for a given node N and (j , s), the two child nodes are
defined by

N1(j , s) = {X ∈ N|Xj ≤ s} and N2(j , s) = {X ∈ N|Xj > s}.

Choice of (j , s)

For a given impurity measure I, we choose (j , s) wich minimizes:

P(N1)I(N1(j , s)) + P(N2)I(N2(j , s)).

205

Split for supervised classification

• Recall that for a given node N and (j , s), the two child nodes are
defined by

N1(j , s) = {X ∈ N|Xj ≤ s} and N2(j , s) = {X ∈ N|Xj > s}.

Choice of (j , s)

For a given impurity measure I, we choose (j , s) wich minimizes:

P(N1)I(N1(j , s)) + P(N2)I(N2(j , s)).

205

Example

I(N) = 0.4872

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Y

● 0

1

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Y

● 0

1

206

Example

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Y

● 0

1

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Y

● 0

1

206

Example

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Y

● 0

1

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Y

● 0

1

I(N1) I(N2) Crit.

Left 0.287 0.137 0.2061
Right 0.488 0.437 0.4562

206

Example

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Y

● 0

1

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Y

● 0

1

I(N1) I(N2) Crit.

Left 0.287 0.137 0.2061
Right 0.488 0.437 0.4562

Conclusion
We select the left split. (Exercise 1,2,3-IML3.) 206

Outline

1. Binary trees

2. Choice of the split

Regression

Supervised classification

3. Pruning a tree

4. Appendix: pruning algorithm

5. Bibliography

207

Questions

• How to select an efficient tree?

• Do we choose the maximum or deeper tree? (split the nodes until one
observation by node).

• Grow a large tree and then prune this tree (select a subtree of this
large tree)?

208

Questions

• How to select an efficient tree?

• Do we choose the maximum or deeper tree? (split the nodes until one
observation by node).

• Grow a large tree and then prune this tree (select a subtree of this
large tree)?

208

Questions

• How to select an efficient tree?

• Do we choose the maximum or deeper tree? (split the nodes until one
observation by node).

• Grow a large tree and then prune this tree (select a subtree of this
large tree)?

208

An example for binary classification

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Y
● 0

1

Optimal tree?
Intuitively, we are tempted to choose 5 or 6 terminal nodes.

209

An example for binary classification

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Y
● 0

1

Optimal tree?
Intuitively, we are tempted to choose 5 or 6 terminal nodes.

209

"Deeper" tree

> library(rpart)
> library(rpart.plot)
> tree1 <- rpart(Y~.,data=my_data,cp=0.0001,minsplit=2)
> prp(tree1)

X1 >= 0.57

X2 < 0.37

X1 < 1

X1 >= 0.75

X1 < 0.74

X1 >= 0.6

X2 < 0.3

X1 >= 0.66

X1 < 0.66

X2 >= 0.32

X1 < 0.59

X2 >= 0.77

X1 < 0.98

X2 < 0.9

X2 >= 0.9

X1 >= 0.66

X1 < 0.64

X2 < 0.4

X1 >= 0.68

X1 >= 0.99

X2 >= 0.62

X1 >= 0.66

X1 < 0.8

X2 >= 0.74

X2 < 0.71

X1 >= 0.95

X1 < 0.96

X1 < 0.59

X1 >= 0.58

X2 < 0.42

X2 >= 0.42

X2 >= 0.8

X1 >= 0.22

X2 < 0.91

X2 >= 0.92

X2 >= 0.95

X2 < 0.95

X1 >= 0.3

X1 < 0.35

X1 < 0.095

X2 >= 0.85

X2 < 0.94

X1 >= 0.079

X2 < 0.017

X1 >= 0.26

X2 < 0.27

X1 < 0.18

X1 >= 0.015

X2 >= 0.027

X2 < 0.07

X1 >= 0.16

X2 >= 0.19

X2 < 0.22

X2 >= 0.26

X2 < 0.1

X1 < 0.13

X2 >= 0.074

X2 >= 0.18

X2 < 0.19

X1 >= 0.54

X2 >= 0.23

X2 < 0.23

X1 >= 0.41

X1 < 0.45

X2 >= 0.61

X2 < 0.62

X1 >= 0.54

X1 < 0.56

X1 < 0.3

X1 >= 0.28

X1 >= 0.19

X1 < 0.22

X2 >= 0.78

X2 < 0.79

X1 < 0.2

X1 >= 0.2

X2 < 0.43

X2 >= 0.41

X2 >= 0.37

X1 < 0.15

X1 >= 0.55

X1 < 0.55

0

0

0

1

0

1

0

1

1

1

0

0

0

1

1

1

0

1

0

0

0

1

0

1

1

1

0

1

0

1

1

0

0

0

1

0

1

1

0

0

1

1

1

0

1

0

0

0

0

1

0

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

0

0

1

1

0

1

1

0

0

0

1

1

1

0

1

1

yes no

210

A smaller tree

> tree2 <- rpart(Y~.,data=my_data)
> prp(tree2)

X2 >= 0.8

X1 >= 0.2 X1 >= 0.6

X2 < 0.40 1

0 1

1

yes no

211

Comparison

• We estimate the misclassification error of these two trees on a test set.

> prev1 <- predict(tree1,newdata=dtest,type="class")
> prev2 <- predict(tree2,newdata=dtest,type="class")
> round(mean(prev1!=dtest$Y),3)
[1] 0.157
> round(mean(prev2!=dtest$Y),3)
[1] 0.115

Conclusion

• Performance is not always improved by the size of the tree.

• Tree size is a tuning parameter which governs the model’s complexity.
We have to select this parameter.

212

Comparison

• We estimate the misclassification error of these two trees on a test set.

> prev1 <- predict(tree1,newdata=dtest,type="class")
> prev2 <- predict(tree2,newdata=dtest,type="class")
> round(mean(prev1!=dtest$Y),3)
[1] 0.157
> round(mean(prev2!=dtest$Y),3)
[1] 0.115

Conclusion

• Performance is not always improved by the size of the tree.

• Tree size is a tuning parameter which governs the model’s complexity.
We have to select this parameter.

212

Comparison

• We estimate the misclassification error of these two trees on a test set.

> prev1 <- predict(tree1,newdata=dtest,type="class")
> prev2 <- predict(tree2,newdata=dtest,type="class")
> round(mean(prev1!=dtest$Y),3)
[1] 0.157
> round(mean(prev2!=dtest$Y),3)
[1] 0.115

Conclusion

• Performance is not always improved by the size of the tree.

• Tree size is a tuning parameter which governs the model’s complexity.
We have to select this parameter.

212

Overfitting

Test error

OVERFITTING

Train error

Complexity (λ)

Remark
Complexity is governed by the depth (or size) of the tree. 213

Bias and variance
Depth controls the tradeoff bias/variance :

1. Small tree =⇒ steady (robust) tree =⇒ small variance... but... large
bias.

2. Large tree =⇒ unsteady tree =⇒ small bias... but... large variance
(overfitting).

Pruning [Breiman et al., 1984]
Instead of stopping the splitting process, we

1. grow a large tree (very deep tree) Tmax ;

2. then select a sequence of nested subtrees (see Appendix 4.4):

Tmax = T0 ⊃ T1 ⊃ . . . ⊃ TK .

3. finally select one subtree in this sequence.

214

Bias and variance
Depth controls the tradeoff bias/variance :

1. Small tree =⇒ steady (robust) tree =⇒ small variance... but... large
bias.

2. Large tree =⇒ unsteady tree =⇒ small bias... but... large variance
(overfitting).

Pruning [Breiman et al., 1984]
Instead of stopping the splitting process, we

1. grow a large tree (very deep tree) Tmax ;

2. then select a sequence of nested subtrees (see Appendix 4.4):

Tmax = T0 ⊃ T1 ⊃ . . . ⊃ TK .

3. finally select one subtree in this sequence.

214

Nested trees

X1 >= 0.57

X2 < 0.37

X1 < 1

X1 >= 0.75

X1 < 0.74

X1 >= 0.6

X2 < 0.3

X1 >= 0.66

X1 < 0.66

X2 >= 0.32

X1 < 0.59

X2 >= 0.77

X1 < 0.98

X2 < 0.9

X2 >= 0.9

X1 >= 0.66

X1 < 0.64

X2 < 0.4

X1 >= 0.68

X1 >= 0.99

X2 >= 0.62

X1 >= 0.66

X1 < 0.8

X2 >= 0.74

X2 < 0.71

X1 >= 0.95

X1 < 0.96

X1 < 0.59

X1 >= 0.58

X2 < 0.42

X2 >= 0.42

X2 >= 0.8

X1 >= 0.22

X2 < 0.91

X2 >= 0.92

X2 >= 0.95

X2 < 0.95

X1 >= 0.3

X1 < 0.35

X1 < 0.095

X2 >= 0.85

X2 < 0.94

X1 >= 0.079

X2 < 0.017

X1 >= 0.26

X2 < 0.27

X1 < 0.18

X1 >= 0.015

X2 >= 0.027

X2 < 0.07

X1 >= 0.16

X2 >= 0.19

X2 < 0.22

X2 >= 0.26

X2 < 0.1

X1 < 0.13

X2 >= 0.074

X2 >= 0.18

X2 < 0.19

X1 >= 0.54

X2 >= 0.23

X2 < 0.23

X1 >= 0.41

X1 < 0.45

X2 >= 0.61

X2 < 0.62

X1 >= 0.54

X1 < 0.56

X1 < 0.3

X1 >= 0.28

X1 >= 0.19

X1 < 0.22

X2 >= 0.78

X2 < 0.79

X1 < 0.2

X1 >= 0.2

X2 < 0.43

X2 >= 0.41

X2 >= 0.37

X1 < 0.15

X1 >= 0.55

X1 < 0.55

0

0

0

1

0

1

0

1

1

1

0

0

0

1

1

1

0

1

0

0

0

1

0

1

1

1

0

1

0

1

1

0

0

0

1

0

1

1

0

0

1

1

1

0

1

0

0

0

0

1

0

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

0

0

1

1

0

1

1

0

0

0

1

1

1

0

1

1

yes no

215

Nested trees

X1 >= 0.57

X2 < 0.37

X1 < 1

X1 >= 0.75

X1 < 0.74

X2 >= 0.77

X1 < 0.98

X2 < 0.9

X2 >= 0.9

X1 >= 0.66

X1 < 0.64

X2 < 0.4

X1 >= 0.68

X1 >= 0.99

X2 >= 0.62

X1 >= 0.66

X1 < 0.8

X2 >= 0.74

X2 < 0.71

X1 >= 0.95

X1 < 0.96

X2 >= 0.8

X1 >= 0.22

X2 < 0.91

X2 >= 0.92

X2 >= 0.95

X2 < 0.95

X1 < 0.095

X2 >= 0.85

X2 < 0.94

X1 >= 0.079

X2 < 0.017

X1 >= 0.26

X2 < 0.27

X1 < 0.18

X1 >= 0.015

X2 >= 0.027

X2 < 0.07

X1 >= 0.16

X2 >= 0.19

X2 < 0.22

X2 >= 0.26

X2 < 0.1

X1 < 0.13

X2 >= 0.074

X2 >= 0.18

X2 < 0.19

X1 >= 0.54

X2 >= 0.61

X2 < 0.62

X1 < 0.2

X1 >= 0.2

0

0

1

1

0

0

0

1

1

1

0

1

0

0

0

1

0

1

1

1

1

0

0

0

1

1

0

0

1

1

1

0

1

0

0

0

0

1

0

1

1

1

1

1

0

0

1

1

0

1

0

1

1

yes no

215

Nested trees

X1 >= 0.57

X2 < 0.37

X1 < 1

X1 >= 0.75

X1 < 0.74

X2 >= 0.77

X1 < 0.98 X2 < 0.4

X1 >= 0.68 X1 >= 0.99

X2 >= 0.62

X1 >= 0.66

X1 < 0.8

X2 >= 0.74

X2 < 0.71

X1 >= 0.95

X1 < 0.96

X2 >= 0.8

X1 >= 0.22

X1 < 0.095

X2 >= 0.85

X2 < 0.94

X1 >= 0.079

X2 < 0.017

X1 >= 0.26

0

0 1

1

0 1

0 1 0

0

0 1 0 1

1

1

1

0

0

0 1

1

1 0 1

1

yes no

215

Nested trees

X1 >= 0.57

X2 < 0.37

X2 >= 0.77

X2 < 0.4

X1 >= 0.68 X1 >= 0.99

X2 >= 0.8

X1 >= 0.22 X2 < 0.0170

0

0 1 0 1

0 1 0 1

yes no

215

Nested trees

X1 >= 0.57

X2 < 0.37

X2 >= 0.77

X2 < 0.4

X1 >= 0.68

X2 >= 0.8

X1 >= 0.220

0

0 1

1

0 1

1

yes no

215

Nested trees

X1 >= 0.57

X2 < 0.37

X2 >= 0.770

0 1

1

yes no

215

Nested trees

1

215

Example

> printcp(tree)
Classification tree:
rpart(formula = Y ~ ., data = my_data, cp = 1e-04, minsplit = 2)
Variables actually used in tree construction:
[1] X1 X2
Root node error: 204/500 = 0.408
n= 500

CP nsplit rel error xerror xstd
1 0.2941176 0 1.000000 1.00000 0.053870
2 0.1225490 1 0.705882 0.71569 0.049838
3 0.0931373 3 0.460784 0.49020 0.043844
4 0.0637255 4 0.367647 0.43627 0.041928
5 0.0122549 5 0.303922 0.34314 0.038034
6 0.0098039 7 0.279412 0.34314 0.038034
7 0.0049020 9 0.259804 0.36275 0.038923
8 0.0040107 25 0.181373 0.34804 0.038260
9 0.0036765 41 0.112745 0.39216 0.040184
10 0.0032680 49 0.083333 0.40196 0.040586
11 0.0024510 52 0.073529 0.41176 0.040980
12 0.0001000 82 0.000000 0.43137 0.041742

216

> arbre1 <- prune(tree,cp=0.005)
> prp(tree)
> prp(tree1)

X1 >= 0.57

X2 < 0.37

X1 < 1

X1 >= 0.75

X1 < 0.74

X1 >= 0.6

X2 < 0.3

X1 >= 0.66

X1 < 0.66

X2 >= 0.32

X1 < 0.59

X2 >= 0.77

X1 < 0.98

X2 < 0.9

X2 >= 0.9

X1 >= 0.66

X1 < 0.64

X2 < 0.4

X1 >= 0.68

X1 >= 0.99

X2 >= 0.62

X1 >= 0.66

X1 < 0.8

X2 >= 0.74

X2 < 0.71

X1 >= 0.95

X1 < 0.96

X1 < 0.59

X1 >= 0.58

X2 < 0.42

X2 >= 0.42

X2 >= 0.8

X1 >= 0.22

X2 < 0.91

X2 >= 0.92

X2 >= 0.95

X2 < 0.95

X1 >= 0.3

X1 < 0.35

X1 < 0.095

X2 >= 0.85

X2 < 0.94

X1 >= 0.079

X2 < 0.017

X1 >= 0.26

X2 < 0.27

X1 < 0.18

X1 >= 0.015

X2 >= 0.027

X2 < 0.07

X1 >= 0.16

X2 >= 0.19

X2 < 0.22

X2 >= 0.26

X2 < 0.1

X1 < 0.13

X2 >= 0.074

X2 >= 0.18

X2 < 0.19

X1 >= 0.54

X2 >= 0.23

X2 < 0.23

X1 >= 0.41

X1 < 0.45

X2 >= 0.61

X2 < 0.62

X1 >= 0.54

X1 < 0.56

X1 < 0.3

X1 >= 0.28

X1 >= 0.19

X1 < 0.22

X2 >= 0.78

X2 < 0.79

X1 < 0.2

X1 >= 0.2

X2 < 0.43

X2 >= 0.41

X2 >= 0.37

X1 < 0.15

X1 >= 0.55

X1 < 0.55

0

0

0

1

0

1

0

1

1

1

0

0

0

1

1

1

0

1

0

0

0

1

0

1

1

1

0

1

0

1

1

0

0

0

1

0

1

1

0

0

1

1

1

0

1

0

0

0

0

1

0

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

0

0

1

1

0

1

1

0

0

0

1

1

1

0

1

1

yes no

X1 >= 0.57

X2 < 0.37

X2 >= 0.77

X2 < 0.4

X1 >= 0.68 X1 >= 0.99

X2 >= 0.8

X1 >= 0.22 X2 < 0.0170

0

0 1 0 1

0 1 0 1

yes no

Remark
We have to select one tree in the sequence

Tmax = T0 ⊃ T1 ⊃ . . . ⊃ TM . 217

The final tree

Risk estimation

We choose the final tree by minimizing a risk R(Tm) = E[`(Y ,Tm(X)]

(as usual). For instance,

1. quadratic risk E[(Y − Tm(X))2] in regression ;

2. misclassification error P(Y 6= Tm(X)) in supervised classification.

This risk is unknown and is generally estimated by cross validation.

Select the optimal tree
The approach consists in

1. estimating the risk for each subtree.

2. selecting the subtree which minimizes the estimated risk.

218

The final tree

Risk estimation

We choose the final tree by minimizing a risk R(Tm) = E[`(Y ,Tm(X)]

(as usual). For instance,

1. quadratic risk E[(Y − Tm(X))2] in regression ;

2. misclassification error P(Y 6= Tm(X)) in supervised classification.

This risk is unknown and is generally estimated by cross validation.

Select the optimal tree
The approach consists in

1. estimating the risk for each subtree.

2. selecting the subtree which minimizes the estimated risk.

218

• Estimations of R(m) are in the column xerror of the function printcp:

CP nsplit rel error xerror xstd
1 0.2941176 0 1.000000 1.00000 0.053870
2 0.1225490 1 0.705882 0.71569 0.049838
3 0.0931373 3 0.460784 0.49020 0.043844
4 0.0637255 4 0.367647 0.43627 0.041928
5 0.0122549 5 0.303922 0.34314 0.038034
6 0.0098039 7 0.279412 0.34314 0.038034
7 0.0049020 9 0.259804 0.36275 0.038923

• We can look at the estimated error for each subtree with plotcp

> plotcp(tree3)

●

●

●

●

● ●
●

●

● ● ●
●

cp

X−v
al R

elat
ive

Erro
r

0.2
0.4

0.6
0.8

1.0

Inf 0.19 0.11 0.028 0.0069 0.0038 0.0028

1 2 4 5 6 8 10 26 42 50 53 83

size of tree

Conclusion
We choose the tree with 5 splits.

219

• Estimations of R(m) are in the column xerror of the function printcp:

CP nsplit rel error xerror xstd
1 0.2941176 0 1.000000 1.00000 0.053870
2 0.1225490 1 0.705882 0.71569 0.049838
3 0.0931373 3 0.460784 0.49020 0.043844
4 0.0637255 4 0.367647 0.43627 0.041928
5 0.0122549 5 0.303922 0.34314 0.038034
6 0.0098039 7 0.279412 0.34314 0.038034
7 0.0049020 9 0.259804 0.36275 0.038923

• We can look at the estimated error for each subtree with plotcp

> plotcp(tree3)

●

●

●

●

● ●
●

●

● ● ●
●

cp

X−v
al R

elat
ive

Erro
r

0.2
0.4

0.6
0.8

1.0

Inf 0.19 0.11 0.028 0.0069 0.0038 0.0028

1 2 4 5 6 8 10 26 42 50 53 83

size of tree

Conclusion
We choose the tree with 5 splits.

219

Visualisation of the final tree

> alpha_opt <- arbre$cptable[which.min(tree$cptable[,"xerror"]),"CP"]
> tree_final <- prune(tree,cp=alpha_opt)
> prp(tree_final)

X1 >= 0.57

X2 < 0.37

X2 >= 0.77

X2 >= 0.8

X1 >= 0.220

0 1 0 1

1

yes no

220

Classification rule and score for a tree

• Final tree T consists of a partition of Rp into |T | terminal nodes
N1, . . . ,N|T |.

• Classification rule:

ĝ(x) =

{
1 if

∑
i :Xi∈N (x) 1Yi=1 ≥

∑
i :Xi∈N (x) 1Yi=0

0 otherwise,

where N (x) stands for the terminal node which contains x .

• Score:
Ŝ(x) = P̂(Y = 1|X = x) =

1
n

∑
i :Xi∈N (x)

1Yi=1.

221

Classification rule and score for a tree

• Final tree T consists of a partition of Rp into |T | terminal nodes
N1, . . . ,N|T |.

• Classification rule:

ĝ(x) =

{
1 if

∑
i :Xi∈N (x) 1Yi=1 ≥

∑
i :Xi∈N (x) 1Yi=0

0 otherwise,

where N (x) stands for the terminal node which contains x .

• Score:
Ŝ(x) = P̂(Y = 1|X = x) =

1
n

∑
i :Xi∈N (x)

1Yi=1.

221

Classification rule and score for a tree

• Final tree T consists of a partition of Rp into |T | terminal nodes
N1, . . . ,N|T |.

• Classification rule:

ĝ(x) =

{
1 if

∑
i :Xi∈N (x) 1Yi=1 ≥

∑
i :Xi∈N (x) 1Yi=0

0 otherwise,

where N (x) stands for the terminal node which contains x .

• Score:
Ŝ(x) = P̂(Y = 1|X = x) =

1
n

∑
i :Xi∈N (x)

1Yi=1.

221

Predict function

• predict function (or predict.rpart) allows to estimate the label or the
score of a new observation:

> x_new <- data.frame(X1=0.5,X2=0.85)
> predict(arbre_final,newdata=x_new)

0 1
1 0.9 0.1
> predict(arbre_final,newdata=x_new,type="class")
1
0
Levels: 0 1

222

Conclusion

• "Simple" method for both regression and supervised classification.

• We can interpret the model (plot the tree) if the tree is not too large.

• One drawback: due to the recursive process, the algorithm is not
robust, affected by small disturbances in the sample.

• This drawback will become an advantage for bootstrap aggregating
=⇒ random forest.

• Exercise 4-IML3.

223

Conclusion

• "Simple" method for both regression and supervised classification.

• We can interpret the model (plot the tree) if the tree is not too large.

• One drawback: due to the recursive process, the algorithm is not
robust, affected by small disturbances in the sample.

• This drawback will become an advantage for bootstrap aggregating
=⇒ random forest.

• Exercise 4-IML3.

223

Conclusion

• "Simple" method for both regression and supervised classification.

• We can interpret the model (plot the tree) if the tree is not too large.

• One drawback: due to the recursive process, the algorithm is not
robust, affected by small disturbances in the sample.

• This drawback will become an advantage for bootstrap aggregating
=⇒ random forest.

• Exercise 4-IML3.

223

Conclusion

• "Simple" method for both regression and supervised classification.

• We can interpret the model (plot the tree) if the tree is not too large.

• One drawback: due to the recursive process, the algorithm is not
robust, affected by small disturbances in the sample.

• This drawback will become an advantage for bootstrap aggregating
=⇒ random forest.

• Exercise 4-IML3.

223

Outline

1. Binary trees

2. Choice of the split

Regression

Supervised classification

3. Pruning a tree

4. Appendix: pruning algorithm

5. Bibliography

224

Construction of the sequence

• Let T be a tree with |T | terminal nodes N1, . . . ,N|T |.
• Define R(N) the risk (error) in node N :

• Regression:

R(N) =
1
|N |

∑
i :Xi∈N

(Yi − ȲN)2.

• Classification:
R(N) =

1
|N |

∑
i :Xi∈N

1Yi 6=YN .

Definition
For α > 0,

Cα(T) =

|T |∑
m=1

NmR(Nm) + α|T |

is the cost complexity criterion of T .

225

Construction of the sequence

• Let T be a tree with |T | terminal nodes N1, . . . ,N|T |.
• Define R(N) the risk (error) in node N :

• Regression:

R(N) =
1
|N |

∑
i :Xi∈N

(Yi − ȲN)2.

• Classification:
R(N) =

1
|N |

∑
i :Xi∈N

1Yi 6=YN .

Definition
For α > 0,

Cα(T) =

|T |∑
m=1

NmR(Nm) + α|T |

is the cost complexity criterion of T .

225

The idea

• Cα(T) measures both the fitting and the complexity of the tree.

• The idea is to find the subtree Tα which minimizes Cα(T) for a safe
choice of α.

Remark

• α = 0 =⇒ Tα = T0 = Tmax .

• α = +∞ =⇒ Tα = T+∞ =tree without split.

• α is called the complexity parameter.

226

The idea

• Cα(T) measures both the fitting and the complexity of the tree.

• The idea is to find the subtree Tα which minimizes Cα(T) for a safe
choice of α.

Remark

• α = 0 =⇒ Tα = T0 = Tmax .

• α = +∞ =⇒ Tα = T+∞ =tree without split.

• α is called the complexity parameter.

226

The idea

• Cα(T) measures both the fitting and the complexity of the tree.

• The idea is to find the subtree Tα which minimizes Cα(T) for a safe
choice of α.

Remark

• α = 0 =⇒ Tα = T0 = Tmax .

• α = +∞ =⇒ Tα = T+∞ =tree without split.

• α is called the complexity parameter.

226

Theorem [Breiman et al., 1984]

The exists a finite sequence α0 = 0 < α1 < . . . < αM with M < |Tmax |
and a sequence of nested trees

Tmax = T0 ⊃ T1 ⊃ . . . ⊃ TM

such thah ∀α ∈ [αm, αm+1[

Tm = argmin
T

Cα(T).

α1α0 = 0

T0 T1 TM

α2 αM

Important consequence

• We now are faced with a finite sequence of nested trees.

• We have to choose one tree in this sequence (or one value of α).

227

Theorem [Breiman et al., 1984]

The exists a finite sequence α0 = 0 < α1 < . . . < αM with M < |Tmax |
and a sequence of nested trees

Tmax = T0 ⊃ T1 ⊃ . . . ⊃ TM

such thah ∀α ∈ [αm, αm+1[

Tm = argmin
T

Cα(T).

α1α0 = 0

T0 T1 TM

α2 αM

Important consequence

• We now are faced with a finite sequence of nested trees.

• We have to choose one tree in this sequence (or one value of α).

227

Theorem [Breiman et al., 1984]

The exists a finite sequence α0 = 0 < α1 < . . . < αM with M < |Tmax |
and a sequence of nested trees

Tmax = T0 ⊃ T1 ⊃ . . . ⊃ TM

such thah ∀α ∈ [αm, αm+1[

Tm = argmin
T

Cα(T).

α1α0 = 0

T0 T1 TM

α2 αM

Important consequence

• We now are faced with a finite sequence of nested trees.

• We have to choose one tree in this sequence (or one value of α). 227

Outline

1. Binary trees

2. Choice of the split

Regression

Supervised classification

3. Pruning a tree

4. Appendix: pruning algorithm

5. Bibliography

228

References i

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984).
Classification and regression trees.
Wadsworth & Brooks.

229

Part V

Bagging and random forests

230

Outline

1. Bagging

2. Random forests

The algorithm

OOB error

Variable importance

3. Bibliography

231

Outline

1. Bagging

2. Random forests

The algorithm

OOB error

Variable importance

3. Bibliography

232

• Bagging is a set of algorithms introduced by Léo Breiman
[Breiman, 1996].

• Bagging comes from Bootstrap Aggregating.

The idea

• Instead of fitting one "sophisticated" machine, fit a lot of simple
machines and aggregate them.

• Example:

m̂(x) =
1
B

B∑
k=1

m̂k(x)

where m̂1(x), . . . , m̂B(x) are simple machines.

233

• Bagging is a set of algorithms introduced by Léo Breiman
[Breiman, 1996].

• Bagging comes from Bootstrap Aggregating.

The idea

• Instead of fitting one "sophisticated" machine, fit a lot of simple
machines and aggregate them.

• Example:

m̂(x) =
1
B

B∑
k=1

m̂k(x)

where m̂1(x), . . . , m̂B(x) are simple machines.

233

• Bagging is a set of algorithms introduced by Léo Breiman
[Breiman, 1996].

• Bagging comes from Bootstrap Aggregating.

The idea

• Instead of fitting one "sophisticated" machine, fit a lot of simple
machines and aggregate them.

• Example:

m̂(x) =
1
B

B∑
k=1

m̂k(x)

where m̂1(x), . . . , m̂B(x) are simple machines.

233

Questions

• How to define the simple machines?

• Do we choose efficient simple machines? Not efficient (large bias, large
variance) machines?

• How many machines?

234

Questions

• How to define the simple machines?

• Do we choose efficient simple machines? Not efficient (large bias, large
variance) machines?

• How many machines?

234

Questions

• How to define the simple machines?

• Do we choose efficient simple machines? Not efficient (large bias, large
variance) machines?

• How many machines?

234

• One constraint: we want to fit simple machines in a similar way (only
trees for instance).

• Problem: if you run the same algorithm on the same dataset
(X1,Y1), . . . , (Xn,Yn), all simple machines will be the same and

m̂(x) =
1
B

B∑
k=1

m̂k(x) = m̂1(x)

=⇒ aggregation is useless.

• Solution: run the same algorithm on different datasets.

235

• One constraint: we want to fit simple machines in a similar way (only
trees for instance).

• Problem: if you run the same algorithm on the same dataset
(X1,Y1), . . . , (Xn,Yn), all simple machines will be the same and

m̂(x) =
1
B

B∑
k=1

m̂k(x) = m̂1(x)

=⇒ aggregation is useless.

• Solution: run the same algorithm on different datasets.

235

• One constraint: we want to fit simple machines in a similar way (only
trees for instance).

• Problem: if you run the same algorithm on the same dataset
(X1,Y1), . . . , (Xn,Yn), all simple machines will be the same and

m̂(x) =
1
B

B∑
k=1

m̂k(x) = m̂1(x)

=⇒ aggregation is useless.

• Solution: run the same algorithm on different datasets.

235

• One constraint: we want to fit simple machines in a similar way (only
trees for instance).

• Problem: if you run the same algorithm on the same dataset
(X1,Y1), . . . , (Xn,Yn), all simple machines will be the same and

m̂(x) =
1
B

B∑
k=1

m̂k(x) = m̂1(x)

=⇒ aggregation is useless.

• Solution: run the same algorithm on different datasets.

235

Bootstrap sample

• We have at hand one dataset Dn = (X1,Y1), . . . , (Xn,Yn).

• We will not create or invent data!

Bootstrap

• Define new datasets by randomly draw dataset with replacement from
the training data.

236

Bootstrap sample

• We have at hand one dataset Dn = (X1,Y1), . . . , (Xn,Yn).

• We will not create or invent data!

Bootstrap

• Define new datasets by randomly draw dataset with replacement from
the training data.

236

Bootstrap sample

• We have at hand one dataset Dn = (X1,Y1), . . . , (Xn,Yn).

• We will not create or invent data!

Bootstrap

• Define new datasets by randomly draw dataset with replacement from
the training data.

236

Bootstrap: example

• The sample:
1 2 3 4 5 6 7 8 9 10

• Bootstrap samples:
3 4 6 10 3 9 10 7 7 1 m1

2 8 6 2 10 10 2 9 5 6 m2

2 9 4 4 7 7 2 3 6 7 m3

6 1 3 3 9 3 8 10 10 1 m4

3 7 10 3 2 8 6 9 10 2 m5
...

...
7 10 3 4 9 10 10 8 6 1 mB

• We finally aggregate:

m̂B(x) =
1
B

B∑
k=1

mk(x).

237

Bootstrap: example

• The sample:
1 2 3 4 5 6 7 8 9 10

• Bootstrap samples:
3 4 6 10 3 9 10 7 7 1 m1

2 8 6 2 10 10 2 9 5 6 m2

2 9 4 4 7 7 2 3 6 7 m3

6 1 3 3 9 3 8 10 10 1 m4

3 7 10 3 2 8 6 9 10 2 m5
...

...
7 10 3 4 9 10 10 8 6 1 mB

• We finally aggregate:

m̂B(x) =
1
B

B∑
k=1

mk(x).

237

Bootstrap: example

• The sample:
1 2 3 4 5 6 7 8 9 10

• Bootstrap samples:
3 4 6 10 3 9 10 7 7 1 m1

2 8 6 2 10 10 2 9 5 6 m2

2 9 4 4 7 7 2 3 6 7 m3

6 1 3 3 9 3 8 10 10 1 m4

3 7 10 3 2 8 6 9 10 2 m5
...

...
7 10 3 4 9 10 10 8 6 1 mB

• We finally aggregate:

m̂B(x) =
1
B

B∑
k=1

mk(x).

237

Bagging algorithm

• Estimates mk are not fitted on the original dataset
Dn = (X1,Y1), . . . , (Xn,Yn) but on bootstrap samples.

Bagging
Inputs:

• a "simple machine" (a tree, 1NN rule...)

• B a positive integer.

For k = 1, . . . ,B :

1. Draw a bootstrap sample from Dn.

2. Fit the simple machine on this bootstrap sample: mk(x).

Output: the aggregate estimate m̂B(x) = 1
B

∑B
k=1mk(x).

238

Bagging algorithm

• Estimates mk are not fitted on the original dataset
Dn = (X1,Y1), . . . , (Xn,Yn) but on bootstrap samples.

Bagging
Inputs:

• a "simple machine" (a tree, 1NN rule...)

• B a positive integer.

For k = 1, . . . ,B :

1. Draw a bootstrap sample from Dn.

2. Fit the simple machine on this bootstrap sample: mk(x).

Output: the aggregate estimate m̂B(x) = 1
B

∑B
k=1mk(x).

238

Bagging algorithm

• Estimates mk are not fitted on the original dataset
Dn = (X1,Y1), . . . , (Xn,Yn) but on bootstrap samples.

Bagging
Inputs:

• a "simple machine" (a tree, 1NN rule...)

• B a positive integer.

For k = 1, . . . ,B :

1. Draw a bootstrap sample from Dn.

2. Fit the simple machine on this bootstrap sample: mk(x).

Output: the aggregate estimate m̂B(x) = 1
B

∑B
k=1mk(x).

238

How to choose B?

• 2 parameters have to be chosen: the number of iterations B and the
simple machine.

• From the Law of Large Numbers, we can prove that

lim
B→+∞

m̂B(x) = lim
B→+∞

1
B

B∑
k=1

mk(x) = m̄(x ,Dn) a.s|Dn.

• As B increases, m̂B stabilizes.

Important conclusion

• B is not an important parameter, we have to choose it as large as
possible (often 500).

• Bagging is random but it is less random when B is large.

239

How to choose B?

• 2 parameters have to be chosen: the number of iterations B and the
simple machine.

• From the Law of Large Numbers, we can prove that

lim
B→+∞

m̂B(x) = lim
B→+∞

1
B

B∑
k=1

mk(x) = m̄(x ,Dn) a.s|Dn.

• As B increases, m̂B stabilizes.

Important conclusion

• B is not an important parameter, we have to choose it as large as
possible (often 500).

• Bagging is random but it is less random when B is large.

239

How to choose B?

• 2 parameters have to be chosen: the number of iterations B and the
simple machine.

• From the Law of Large Numbers, we can prove that

lim
B→+∞

m̂B(x) = lim
B→+∞

1
B

B∑
k=1

mk(x) = m̄(x ,Dn) a.s|Dn.

• As B increases, m̂B stabilizes.

Important conclusion

• B is not an important parameter, we have to choose it as large as
possible (often 500).

• Bagging is random but it is less random when B is large.

239

How to choose B?

• 2 parameters have to be chosen: the number of iterations B and the
simple machine.

• From the Law of Large Numbers, we can prove that

lim
B→+∞

m̂B(x) = lim
B→+∞

1
B

B∑
k=1

mk(x) = m̄(x ,Dn) a.s|Dn.

• As B increases, m̂B stabilizes.

Important conclusion

• B is not an important parameter, we have to choose it as large as
possible (often 500).

• Bagging is random but it is less random when B is large.

239

Some properties

Bias and variance

For regression, we have E[m̂B(x)] = E[mk(x)], ∀k = 1, . . . ,B and

V[m̂B(x)] ≈ |ρ(x)|V[mk(x)]

where ρ(x) = corr(mk(x),mk ′(x)) for k 6= k ′.

Remarks

• Bias is not affected by the bagging process.

• Variance of the bagging estimate reduces when correlation between the
simple machines decreases.

• Consequence: we need simple machines sensitive to small disturbances
of the data.

• Trees are known to satisfy this property (drawback becomes an
advantage...).

240

Some properties

Bias and variance

For regression, we have E[m̂B(x)] = E[mk(x)], ∀k = 1, . . . ,B and

V[m̂B(x)] ≈ |ρ(x)|V[mk(x)]

where ρ(x) = corr(mk(x),mk ′(x)) for k 6= k ′.

Remarks

• Bias is not affected by the bagging process.

• Variance of the bagging estimate reduces when correlation between the
simple machines decreases.

• Consequence: we need simple machines sensitive to small disturbances
of the data.

• Trees are known to satisfy this property (drawback becomes an
advantage...).

240

Some properties

Bias and variance

For regression, we have E[m̂B(x)] = E[mk(x)], ∀k = 1, . . . ,B and

V[m̂B(x)] ≈ |ρ(x)|V[mk(x)]

where ρ(x) = corr(mk(x),mk ′(x)) for k 6= k ′.

Remarks

• Bias is not affected by the bagging process.

• Variance of the bagging estimate reduces when correlation between the
simple machines decreases.

• Consequence: we need simple machines sensitive to small disturbances
of the data.

• Trees are known to satisfy this property (drawback becomes an
advantage...).

240

Some properties

Bias and variance

For regression, we have E[m̂B(x)] = E[mk(x)], ∀k = 1, . . . ,B and

V[m̂B(x)] ≈ |ρ(x)|V[mk(x)]

where ρ(x) = corr(mk(x),mk ′(x)) for k 6= k ′.

Remarks

• Bias is not affected by the bagging process.

• Variance of the bagging estimate reduces when correlation between the
simple machines decreases.

• Consequence: we need simple machines sensitive to small disturbances
of the data.

• Trees are known to satisfy this property (drawback becomes an
advantage...).

240

Some properties

Bias and variance

For regression, we have E[m̂B(x)] = E[mk(x)], ∀k = 1, . . . ,B and

V[m̂B(x)] ≈ |ρ(x)|V[mk(x)]

where ρ(x) = corr(mk(x),mk ′(x)) for k 6= k ′.

Remarks

• Bias is not affected by the bagging process.

• Variance of the bagging estimate reduces when correlation between the
simple machines decreases.

• Consequence: we need simple machines sensitive to small disturbances
of the data.

• Trees are known to satisfy this property (drawback becomes an
advantage...). 240

Outline

1. Bagging

2. Random forests

The algorithm

OOB error

Variable importance

3. Bibliography

241

Outline

1. Bagging

2. Random forests

The algorithm

OOB error

Variable importance

3. Bibliography

242

Tree (reminder)

s1

s2

s4

s3

X1 ≥ s1X1 < s1

X2 ≥ s2 X2 < s2

X1 < s3 X1 ≥ s3

X2 < s4 X2 ≥ s4

Important parameter: depth

• small: bias ↗, variance ↘
• large: bias ↘, variance ↗

243

Tree (reminder)

s1

s2

s4

s3

X1 ≥ s1X1 < s1

X2 ≥ s2 X2 < s2

X1 < s3 X1 ≥ s3

X2 < s4 X2 ≥ s4

Important parameter: depth

• small: bias ↗, variance ↘
• large: bias ↘, variance ↗

243

• A random forest = a collection of trees.

• These algorithms have been studied by Léo Breiman (2000).

• References

http://www.stat.berkeley.edu/~breiman/RandomForests/

Robin Genuer’s phd thesis [Genuer, 2010].

• Trees are fitted as for the CART process (no pruning) with only one
small variation.

244

http://www.stat.berkeley.edu/~breiman/RandomForests/

• A random forest = a collection of trees.

• These algorithms have been studied by Léo Breiman (2000).

• References

http://www.stat.berkeley.edu/~breiman/RandomForests/

Robin Genuer’s phd thesis [Genuer, 2010].

• Trees are fitted as for the CART process (no pruning) with only one
small variation.

244

http://www.stat.berkeley.edu/~breiman/RandomForests/

• A random forest = a collection of trees.

• These algorithms have been studied by Léo Breiman (2000).

• References

http://www.stat.berkeley.edu/~breiman/RandomForests/

Robin Genuer’s phd thesis [Genuer, 2010].

• Trees are fitted as for the CART process (no pruning) with only one
small variation.

244

http://www.stat.berkeley.edu/~breiman/RandomForests/

s1

s2

s4

s3

X1 ≥ s1X1 < s1

X2 ≥ s2 X2 < s2

X1 < s3 X1 ≥ s3

X2 < s4 X2 ≥ s4

Trees for the forest

• At each step, the best split is selected among mtry ≤ d inputs
randomly chosen among the d inputs.

• Goal: try to reduce correlations between the trees, to make the trees
more different from each other.

245

s1

s2

s4

s3

X1 ≥ s1X1 < s1

X2 ≥ s2 X2 < s2

X1 < s3 X1 ≥ s3

X2 < s4 X2 ≥ s4

Trees for the forest

• At each step, the best split is selected among mtry ≤ d inputs
randomly chosen among the d inputs.

• Goal: try to reduce correlations between the trees, to make the trees
more different from each other.

245

s1

s2

s4

s3

X1 ≥ s1X1 < s1

X2 ≥ s2 X2 < s2

X1 < s3 X1 ≥ s3

X2 < s4 X2 ≥ s4

Trees for the forest

• At each step, the best split is selected among mtry ≤ d inputs
randomly chosen among the d inputs.

• Goal: try to reduce correlations between the trees, to make the trees
more different from each other.

245

Random forest algorithm
Inputs:

• B size of the forest;

• mtry ∈ {1, . . . , d} number of candidate inputs for each split.

For k = 1, . . . ,B :

1. Draw a bootstrap sample from Dn;

2. Fit a tree according to the CART process, each split is chosen among
mtry variables randomly chosen among the d input variables. Denote
by Tk(x) the tree.

Output: the random forest T̂B(x) = 1
B

∑B
k=1 Tk(x).

246

Random forest algorithm
Inputs:

• B size of the forest;

• mtry ∈ {1, . . . , d} number of candidate inputs for each split.

For k = 1, . . . ,B :

1. Draw a bootstrap sample from Dn;

2. Fit a tree according to the CART process, each split is chosen among
mtry variables randomly chosen among the d input variables. Denote
by Tk(x) the tree.

Output: the random forest T̂B(x) = 1
B

∑B
k=1 Tk(x).

246

Comments

• The algorithm is for both regression and binary classfication:
1. for regression, the RF estimates m?(x) = E[Y |X = x];
2. for binary classification, the RF estimates S?(x) = P(Y = 1|X = x).

• Simple algorithm. On R, you can use randomForest function from the
randomForest package or the ranger function from the ranger package.

• Estimate known to be efficient for complex data and robust (wrt to the
choice of its parameter).

247

Comments

• The algorithm is for both regression and binary classfication:
1. for regression, the RF estimates m?(x) = E[Y |X = x];
2. for binary classification, the RF estimates S?(x) = P(Y = 1|X = x).

• Simple algorithm. On R, you can use randomForest function from the
randomForest package or the ranger function from the ranger package.

• Estimate known to be efficient for complex data and robust (wrt to the
choice of its parameter).

247

Comments

• The algorithm is for both regression and binary classfication:
1. for regression, the RF estimates m?(x) = E[Y |X = x];
2. for binary classification, the RF estimates S?(x) = P(Y = 1|X = x).

• Simple algorithm. On R, you can use randomForest function from the
randomForest package or the ranger function from the ranger package.

• Estimate known to be efficient for complex data and robust (wrt to the
choice of its parameter).

247

Choice of the parameter

• B : large.

Remind
Bagging decreases the variance:

V[T̂B(x)] ≈ |ρ(x)|V[Tk(x)].

Consequence

• Bias is not improved by the bagging process, it is recommended to use
trees with small bias and large variance.

• Trees for forest are deep trees with a small number of observations in
each terminal node.

• By default randomForest fit trees with (only) 5 observations in
terminal nodes for regression and 1 for supervised classification.

248

Choice of the parameter

• B : large.

Remind
Bagging decreases the variance:

V[T̂B(x)] ≈ |ρ(x)|V[Tk(x)].

Consequence

• Bias is not improved by the bagging process, it is recommended to use
trees with small bias and large variance.

• Trees for forest are deep trees with a small number of observations in
each terminal node.

• By default randomForest fit trees with (only) 5 observations in
terminal nodes for regression and 1 for supervised classification.

248

Choice of the parameter

• B : large.

Remind
Bagging decreases the variance:

V[T̂B(x)] ≈ |ρ(x)|V[Tk(x)].

Consequence

• Bias is not improved by the bagging process, it is recommended to use
trees with small bias and large variance.

• Trees for forest are deep trees with a small number of observations in
each terminal node.

• By default randomForest fit trees with (only) 5 observations in
terminal nodes for regression and 1 for supervised classification.

248

Choice of the parameter

• B : large.

Remind
Bagging decreases the variance:

V[T̂B(x)] ≈ |ρ(x)|V[Tk(x)].

Consequence

• Bias is not improved by the bagging process, it is recommended to use
trees with small bias and large variance.

• Trees for forest are deep trees with a small number of observations in
each terminal node.

• By default randomForest fit trees with (only) 5 observations in
terminal nodes for regression and 1 for supervised classification.

248

Choice of the parameter

• B : large.

Remind
Bagging decreases the variance:

V[T̂B(x)] ≈ |ρ(x)|V[Tk(x)].

Consequence

• Bias is not improved by the bagging process, it is recommended to use
trees with small bias and large variance.

• Trees for forest are deep trees with a small number of observations in
each terminal node.

• By default randomForest fit trees with (only) 5 observations in
terminal nodes for regression and 1 for supervised classification.

248

Choice of mtry

• This parameter (slightly) governs the bias/variance trade-off of the
forest.

Conclusion

• We can look at the performances of the forest for many values of mtry.

• By default mtry = d/3 for regression and
√
d for supervised

classification.

249

Choice of mtry

• This parameter (slightly) governs the bias/variance trade-off of the
forest.

Conclusion

• We can look at the performances of the forest for many values of mtry.

• By default mtry = d/3 for regression and
√
d for supervised

classification.

249

Application on the spam dataset

> library(randomForest)
> forest1 <- randomForest(type~.,data=spam)
> forest1

Call:
randomForest(formula = type ~ ., data = spam)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 7

OOB estimate of error rate: 5.26%
Confusion matrix:

0 1 class.error
0 1352 42 0.03012912
1 79 827 0.08719647

250

Outline

1. Bagging

2. Random forests

The algorithm

OOB error

Variable importance

3. Bibliography

251

Random forest performance

• As for other machine learning algorithms, we need criteria to measure
performances of a random forest.

• Examples:

• Quadratic risk E[(Y − T̂B(X))2] for regression;
• Misclassification error P(Y 6= T̂B(X)) for supervised classification.

• These criteria can be estimated by validation hold out or cross
validation.

• Bootstrap step in bagging algorithms proposes another way to estimate
these criteria: OOB (Out Of Bag).

252

Random forest performance

• As for other machine learning algorithms, we need criteria to measure
performances of a random forest.

• Examples:

• Quadratic risk E[(Y − T̂B(X))2] for regression;
• Misclassification error P(Y 6= T̂B(X)) for supervised classification.

• These criteria can be estimated by validation hold out or cross
validation.

• Bootstrap step in bagging algorithms proposes another way to estimate
these criteria: OOB (Out Of Bag).

252

Random forest performance

• As for other machine learning algorithms, we need criteria to measure
performances of a random forest.

• Examples:

• Quadratic risk E[(Y − T̂B(X))2] for regression;
• Misclassification error P(Y 6= T̂B(X)) for supervised classification.

• These criteria can be estimated by validation hold out or cross
validation.

• Bootstrap step in bagging algorithms proposes another way to estimate
these criteria: OOB (Out Of Bag).

252

Random forest performance

• As for other machine learning algorithms, we need criteria to measure
performances of a random forest.

• Examples:

• Quadratic risk E[(Y − T̂B(X))2] for regression;
• Misclassification error P(Y 6= T̂B(X)) for supervised classification.

• These criteria can be estimated by validation hold out or cross
validation.

• Bootstrap step in bagging algorithms proposes another way to estimate
these criteria: OOB (Out Of Bag).

252

Ouf Of Bag error

• For each (Xi ,Yi), construct its random forest predictor by averaging
only those trees corresponding to bootstrap samples in which (Xi ,Yi)

does not appear:

Ŷi =
1
|IB |

∑
k∈IB

Tk(Xi)

where IB is the set of trees such that (Xi ,Yi) is Out Of Bag.

Out Of Bag estimates

• OOB quadratic risk: 1
n

∑n
i=1(Ŷi − Yi)

2.

• OOB misclassification error: 1
n

∑n
i=1 1Ŷi 6=Yi

.

253

Ouf Of Bag error

• For each (Xi ,Yi), construct its random forest predictor by averaging
only those trees corresponding to bootstrap samples in which (Xi ,Yi)

does not appear:

Ŷi =
1
|IB |

∑
k∈IB

Tk(Xi)

where IB is the set of trees such that (Xi ,Yi) is Out Of Bag.

Out Of Bag estimates

• OOB quadratic risk: 1
n

∑n
i=1(Ŷi − Yi)

2.

• OOB misclassification error: 1
n

∑n
i=1 1Ŷi 6=Yi

.

253

Example

3 4 6 10 3 9 10 7 7 1 m1

2 8 6 2 10 10 2 9 5 6 m2

2 9 4 4 7 7 2 3 6 7 m3

6 1 3 3 9 3 8 10 10 1 m4

3 7 10 3 2 8 6 9 10 2 m5

7 10 3 4 9 10 10 8 6 1 m6

• (X1,Y1) does not appear in bootstrap samples 2, 3 and 5, thus

Ŷ1 =
1
3

(m2(X1) + m3(X1) + m5(X1)).

• We do the same for all the observations =⇒ Ŷ2, . . . , Ŷn.
• We obtain the OOB quadratic risk:

1
n

n∑
i=1

(Ŷi − Yi)
2.

254

Example

3 4 6 10 3 9 10 7 7 1 m1

2 8 6 2 10 10 2 9 5 6 m2

2 9 4 4 7 7 2 3 6 7 m3

6 1 3 3 9 3 8 10 10 1 m4

3 7 10 3 2 8 6 9 10 2 m5

7 10 3 4 9 10 10 8 6 1 m6

• (X1,Y1) does not appear in bootstrap samples 2, 3 and 5, thus

Ŷ1 =
1
3

(m2(X1) + m3(X1) + m5(X1)).

• We do the same for all the observations =⇒ Ŷ2, . . . , Ŷn.

• We obtain the OOB quadratic risk:

1
n

n∑
i=1

(Ŷi − Yi)
2.

254

Example

3 4 6 10 3 9 10 7 7 1 m1

2 8 6 2 10 10 2 9 5 6 m2

2 9 4 4 7 7 2 3 6 7 m3

6 1 3 3 9 3 8 10 10 1 m4

3 7 10 3 2 8 6 9 10 2 m5

7 10 3 4 9 10 10 8 6 1 m6

• (X1,Y1) does not appear in bootstrap samples 2, 3 and 5, thus

Ŷ1 =
1
3

(m2(X1) + m3(X1) + m5(X1)).

• We do the same for all the observations =⇒ Ŷ2, . . . , Ŷn.
• We obtain the OOB quadratic risk:

1
n

n∑
i=1

(Ŷi − Yi)
2.

254

Example

• Spam dataset with mtry = 1 :

> forest2 <- randomForest(Y~.,data=spam,mtry=1)
> forest2

Call:
randomForest(formula = Y ~ ., data = dapp, mtry = 1)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 1

OOB estimate of error rate: 8.04%
Confusion matrix:

0 1 class.error
0 1367 27 0.01936872
1 158 748 0.17439294

Conclusion
OOB misclassification error: 8.04% for mtry = 1 and 5.26% for mtry = 7.

255

Example

• Spam dataset with mtry = 1 :

> forest2 <- randomForest(Y~.,data=spam,mtry=1)
> forest2

Call:
randomForest(formula = Y ~ ., data = dapp, mtry = 1)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 1

OOB estimate of error rate: 8.04%
Confusion matrix:

0 1 class.error
0 1367 27 0.01936872
1 158 748 0.17439294

Conclusion
OOB misclassification error: 8.04% for mtry = 1 and 5.26% for mtry = 7.

255

Outline

1. Bagging

2. Random forests

The algorithm

OOB error

Variable importance

3. Bibliography

256

• Single trees are highly interpretable.

• Linear combinations of trees (random forests) loose this important
features.

• There exists a score which measures importance of each inputs.

• As for OOB error, this score is based on the fact for some observations
does not appear in bootstrap samples.

257

• Single trees are highly interpretable.

• Linear combinations of trees (random forests) loose this important
features.

• There exists a score which measures importance of each inputs.

• As for OOB error, this score is based on the fact for some observations
does not appear in bootstrap samples.

257

• Let OOBk denotes the OOB sample of the k-th tree.

• Let EOOBk
the quadratic error of the k-th tree measured on OOBk :

EOOBk
=

1
|OOBk |

∑
i∈OOBk

(Tk(Xi)− Yi)
2.

• Permute (randomly) the values of input j in OOBk =⇒ OOB j
k and

compute the quadratic error on this dataset:

E j
OOBk

=
1

|OOB j
k |

∑
i∈OOB j

k

(Tk(X j
i)− Yi)

2,

Definition
The variable importance score for the j variable is defined by

Imp(Xj) =
1
B

B∑
k=1

(E j
OOBk

− EOOBk
).

258

• Let OOBk denotes the OOB sample of the k-th tree.
• Let EOOBk

the quadratic error of the k-th tree measured on OOBk :

EOOBk
=

1
|OOBk |

∑
i∈OOBk

(Tk(Xi)− Yi)
2.

• Permute (randomly) the values of input j in OOBk =⇒ OOB j
k and

compute the quadratic error on this dataset:

E j
OOBk

=
1

|OOB j
k |

∑
i∈OOB j

k

(Tk(X j
i)− Yi)

2,

Definition
The variable importance score for the j variable is defined by

Imp(Xj) =
1
B

B∑
k=1

(E j
OOBk

− EOOBk
).

258

• Let OOBk denotes the OOB sample of the k-th tree.
• Let EOOBk

the quadratic error of the k-th tree measured on OOBk :

EOOBk
=

1
|OOBk |

∑
i∈OOBk

(Tk(Xi)− Yi)
2.

• Permute (randomly) the values of input j in OOBk =⇒ OOB j
k

and
compute the quadratic error on this dataset:

E j
OOBk

=
1

|OOB j
k |

∑
i∈OOB j

k

(Tk(X j
i)− Yi)

2,

Definition
The variable importance score for the j variable is defined by

Imp(Xj) =
1
B

B∑
k=1

(E j
OOBk

− EOOBk
).

258

• Let OOBk denotes the OOB sample of the k-th tree.
• Let EOOBk

the quadratic error of the k-th tree measured on OOBk :

EOOBk
=

1
|OOBk |

∑
i∈OOBk

(Tk(Xi)− Yi)
2.

• Permute (randomly) the values of input j in OOBk =⇒ OOB j
k and

compute the quadratic error on this dataset:

E j
OOBk

=
1

|OOB j
k |

∑
i∈OOB j

k

(Tk(X j
i)− Yi)

2,

Definition
The variable importance score for the j variable is defined by

Imp(Xj) =
1
B

B∑
k=1

(E j
OOBk

− EOOBk
).

258

• Let OOBk denotes the OOB sample of the k-th tree.
• Let EOOBk

the quadratic error of the k-th tree measured on OOBk :

EOOBk
=

1
|OOBk |

∑
i∈OOBk

(Tk(Xi)− Yi)
2.

• Permute (randomly) the values of input j in OOBk =⇒ OOB j
k and

compute the quadratic error on this dataset:

E j
OOBk

=
1

|OOB j
k |

∑
i∈OOB j

k

(Tk(X j
i)− Yi)

2,

Definition
The variable importance score for the j variable is defined by

Imp(Xj) =
1
B

B∑
k=1

(E j
OOBk

− EOOBk
).

258

Example

• It is easy to obtain variable importance score with randomForest

> imp <- importance(forest1)
> imp1 <- sort(imp,decreasing=TRUE)
> ord <- order(imp,decreasing=TRUE)
> ord
[1] 52 53 55 7 56 16 21 25 57 5 24 19 26 23 46 27 11 8 50 12 37 3 18 6 45

[26] 17 10 2 28 42 49 35 1 36 39 13 54 9 30 33 22 51 29 14 43 44 31 20 48 15
[51] 40 4 41 34 32 38 47
> barplot(imp1,beside=TRUE)

0
20

40
60

80
100

120

259

Comparison - spam dataset

• We make a comparison between some statistical learning algorithms on
the spam dataset.

• To do that, we split the data into a

• a training set of size 2300 to fit and calibrate the models;

• a test set of size 2301 to estimate misclassification error of each model

Ln(ĝ) =
1

ntest

∑
i∈Dtest

1ĝ(Xi) 6=Yi
.

260

Comparison - spam dataset

• We make a comparison between some statistical learning algorithms on
the spam dataset.

• To do that, we split the data into a

• a training set of size 2300 to fit and calibrate the models;

• a test set of size 2301 to estimate misclassification error of each model

Ln(ĝ) =
1

ntest

∑
i∈Dtest

1ĝ(Xi) 6=Yi
.

260

0 200 400 600 800 1000

0.0
5

0.1
0

0.1
5

0.2
0

nombre d'iterations

erre
ur

Foret
Adaboost
Logitboost
k−ppv
arbre

Method M. error

Random Forest 0.050
Adaboost 0.052
Logitboost 0.048

k-NN 0.200
Tree 0.100

• Exercise 5-IML3

261

0 200 400 600 800 1000

0.0
5

0.1
0

0.1
5

0.2
0

nombre d'iterations

erre
ur

Foret
Adaboost
Logitboost
k−ppv
arbre

Method M. error

Random Forest 0.050
Adaboost 0.052
Logitboost 0.048

k-NN 0.200
Tree 0.100

• Exercise 5-IML3

261

0 200 400 600 800 1000

0.0
5

0.1
0

0.1
5

0.2
0

nombre d'iterations

erre
ur

Foret
Adaboost
Logitboost
k−ppv
arbre

Method M. error

Random Forest 0.050
Adaboost 0.052
Logitboost 0.048

k-NN 0.200
Tree 0.100

• Exercise 5-IML3

261

Outline

1. Bagging

2. Random forests

The algorithm

OOB error

Variable importance

3. Bibliography

262

References i

Breiman, L. (1996).
Bagging predictors.
Machine Learning, 26(2):123–140.

Genuer, R. (2010).
Forêts aléatoires : aspects théoriques, sélection de variables et
applications.
PhD thesis, Université Paris XI.

263

Test - Instructions

• Document allowed: 1 sheet A4 format (single sided). No calculators,
no laptops, no tablets, no mobile phone...

• Questions using the sign ♣ may have one or several correct answers.
Other questions have a single correct answer.

• Only the last sheet (answer sheet page 9) is to be returned. You can
keep all the other pages.

• Squares corresponding to good answers have to be colored with a
black pen. Cross or circle marks are not sufficient! It is not possible to
correct (once a square has been colored).

264

Scoring process

• No answer to one question =⇒ 0 point for the question.

• Questions with a single correct answer: positive score for a good
answer, negative score for a bad answer.

• Questions with several correct answers (sign ♣): positive score for
each good answer, negative or null score for each bad answer.

265

Mistake in exercise 1

• Many question in the exercices, they are not in the same order.
• Be careful: Exercise 1 should start with: We consider the following

tibbles:

df1
A tibble ...

df2
A tibble ...

• But in some subjects, these tibbles could be presented:
• Between Question 1 and Question 2
• Between Question 2 and Question 3
• After Question 3

Solution
You have to find the tibbles df1 and df2 before answering to Question 1,
Question 2 and Question 3.

266

Project (machine learning part)

• Find a dataset for a supervised learning problem (explain one variable
by other variables). This dataset should contain at least 800
individuals and 30 variables (continuous or categorical).

• Descriptive part: present data (individuals and variables) and use
efficient R tools (dplyr, ggplot...) for data manipulation and
visualization.
=⇒ not a list of graph or summaries! You have to comment each
graph and statistical summaries.

267

Machine learning part

• Identify the practical problem;

• Translate the practical problem into a mathematical problem (Y , X ,
loss function, risk...).

• Propose and explain many machine learning algorithms (k-nn,
linear/logistic, ridge, lasso, tree, random forest...)

• Define a way to compare these algorithms (validation hold out, cross
validation...).

• Be careful: you have also to select parameters for each algorithms...
You can look at exercise 6 of the third tutorial.

• Conclusion: choice of the best method and analysis of its
performances.

268

• Deadline: December, 15th (11:59 pm).

• Each group should provide a notebook (.rmd file) and put on
blackboard (you will receive instructions):
• the dataset (.txt, .csv)
• the rmd file and the html output file (with figures, R commands, R

output...)

• Be careful (again): I will test your codes by running all the chunks of
the notebook (the notebook should be complete!), in case of problem
with some chunks, you will be penalized.

269

Conclusion

• More than an Introduction to machine learning.

• Propose a solid mathematical framework to make machine learning.

• You now have the tools to understand more complex algorithms: SVM,
gradient boosting...

• ... just an introduction (15hours...): other lectures on these topics.

• Try to avoid the june exam session!

THANK YOU

270

Conclusion

• More than an Introduction to machine learning.

• Propose a solid mathematical framework to make machine learning.

• You now have the tools to understand more complex algorithms: SVM,
gradient boosting...

• ... just an introduction (15hours...): other lectures on these topics.

• Try to avoid the june exam session!

THANK YOU

270

Conclusion

• More than an Introduction to machine learning.

• Propose a solid mathematical framework to make machine learning.

• You now have the tools to understand more complex algorithms: SVM,
gradient boosting...

• ... just an introduction (15hours...): other lectures on these topics.

• Try to avoid the june exam session!

THANK YOU

270

Conclusion

• More than an Introduction to machine learning.

• Propose a solid mathematical framework to make machine learning.

• You now have the tools to understand more complex algorithms: SVM,
gradient boosting...

• ... just an introduction (15hours...): other lectures on these topics.

• Try to avoid the june exam session!

THANK YOU

270

Conclusion

• More than an Introduction to machine learning.

• Propose a solid mathematical framework to make machine learning.

• You now have the tools to understand more complex algorithms: SVM,
gradient boosting...

• ... just an introduction (15hours...): other lectures on these topics.

• Try to avoid the june exam session!

THANK YOU

270

	Mathematical setting for SL
	Motivations
	Mathematical framework for statistical learning
	Some criterion for regression and supervised classification
	Regression
	Binary classification
	Scoring

	Estimating the risk
	Overfitting
	Bibliography

	Parametric versus nonparametric approaches
	Some parametric methods
	Linear and logistic models
	Linear discriminant analysis

	Some nonparametric methods
	Kernel and nearest neighbors methods
	The curse of dimensionality

	Empirical risk minimization
	Setting
	Caret package

	Bibliography

	Linear model: variable selection and et regularization
	Subset selection
	Penalized regression
	Ridge regression
	Lasso regression
	Supervised classification

	Bibliography

	Trees
	Binary trees
	Choice of the split
	Regression
	Supervised classification

	Pruning a tree
	Appendix: pruning algorithm
	Bibliography

	Bagging and random forests
	Bagging
	Random forests
	The algorithm
	OOB error
	Variable importance

	Bibliography

