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Outline

• 15 hours for this introduction.

• Materials: slides + exercises with R available here
https://lrouviere.github.io/intro-machine-learning/

• 4 parts:
1. Setting for statistical learning
2. Parametric vs non parametric approaches
3. Penalized regressions
4. Trees and random forests

• Prerequisites: basics in probability, statistics (law of large numbers,
estimation, bias, variance...) and data mining (linear model, logistic
model, linear discriminant analysis...).
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Part I

Mathematical setting for SL
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Statistical learning?

Many "definitions"

1. "... explores way of estimating functional dependency from a given
collection of data" [Vapnik, 2000].

2. "...vast set of tools for modelling and understanding complex data"
[James et al., 2015].

3. Learn a behavior from examples, let the data describes mechanisms of
a problem.

Statement

• Due to the digital revolution, we are faced with more and more
complex data.

• Usual algorithms are not always efficient for these kind of data.

• It is necessary to provide efficient algorithms which (automatically)
learn from data.
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History - see [Besse and Laurent, ]

Period Memory Order of magnitude

1940-70 Byte n = 30, p ≤ 10
1970 MB n = 500, p ≤ 10
1980 MB Machine Learning (computer science)
1990 GB Data-Mining
2000 TB p > n, statistical learning
2010 PB n and p large, cloud, cluster...
2013 ?? Big data
2017 ?? Artificial Intelligence

Computer resources =⇒

• Data Mining (patterns in large datasets, outliers...).

• Statistical learning (algorithms that can automatically learn from the
data) =⇒ data decides, not the user!
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Statistical learning

• Find algorithms that can automatically learn from the data.

• It is not the user who choose both an algorithm and/or the
parameters, it is the data which decides.

• But...

the user should tell to the computer how to do that.

Conclusion
It is necessary to master the basics of machine learning algorithms.
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Handwritten recognition

Statistical learning
Understand and learn a behavior from examples.

What is the number? 0, 1, 2...?
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Speech recognition
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Ozone prediction

• During one year, we have measured ozone concentration in a city (V4) ;

• Other meteorological variables are available (temperature, nebulosity,
wind...).

> head(Ozone)
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13

1 1 1 4 3 5480 8 20 NA NA 5000 -15 30.56 200
2 1 2 5 3 5660 6 NA 38 NA NA -14 NA 300
3 1 3 6 3 5710 4 28 40 NA 2693 -25 47.66 250
4 1 4 7 5 5700 3 37 45 NA 590 -24 55.04 100
5 1 5 1 5 5760 3 51 54 45.32 1450 25 57.02 60

Question
Can we explain and predict ozone concentration for tomorrow given
meteorological predictions?
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Spam detection

• For 4 601 emails, we have identified 1813 spams.

• In addition to this class label there are 57 variables indicating the
frequency of some words and characters in the e-mail.

> spam[1:5,c(1:8,58)]
make address all num3d our over remove internet type

1 0.00 0.64 0.64 0 0.32 0.00 0.00 0.00 spam
2 0.21 0.28 0.50 0 0.14 0.28 0.21 0.07 spam
3 0.06 0.00 0.71 0 1.23 0.19 0.19 0.12 spam
4 0.00 0.00 0.00 0 0.63 0.00 0.31 0.63 spam
5 0.00 0.00 0.00 0 0.63 0.00 0.31 0.63 spam

Question
From these informations, can we automatically detect if a new e-mail is
(or not) a spam?
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Supervised vs unsupervised learning

• Supervised learning: explain/predict an output y ∈ Y from inputs
x ∈ X :

• Linear and logistic models;
• Linear discriminant analysis;
• Tree and random forests...

• Unsupervised learning: describe hidden structure from "unlabeled"
data (make groups):

• Hierarchical classifications;
• k-means algorithms;
• Mixture models...

Wide range of applications
finance, economy, marketing, biology, medecine...
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Theory for statistical learning

References

• Reference book: [Vapnik, 2000]
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The Elements of Statistical Learning [Hastie et al., 2009,
James et al., 2015]

• Available (with datasets, R commands...) at:

https://web.stanford.edu/~hastie/ElemStatLearn/
http://www-bcf.usc.edu/~gareth/ISL/

• This course is largely based on these two books.
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Regression vs supervised classification

• Input/output data: dn = (x1, y1), . . . , (xn, yn) where xi ∈ X are the
inputs yi ∈ Y the outputs.

Goal

1. Explain connections between inputs xi and outputs yi ;

2. Predict the output y for a new input x ∈ X .

Vocabulary

• When the output Y is continuous, we are faced with a regression
problem.

• When the output is categorical (Card(Y) finite), it is a supervised
classification problem.
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Examples

• Most of the presented problems are supervised learning problems: we
have to predict an output y by inputs x :

yi xi

Number picture Super. Class.
Word curve Super. Class.
Spam word frequencies Super. Class

O3 concentration meteo. variables. Regression

Remark

• One output yi .

• Wide range of input objects xi (continuous, categorical, curves,
pictures...).
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Mathematical framework (begin)

• Given observations dn = {(x1, y1), . . . , (xn, yn)} we want to
explain/predict outputs yi ∈ Y from inputs xi ∈ X .

• We have to find a machine (function) f : X → Y such that

f (xi ) ≈ yi , i = 1, . . . , n.

• Requirement: a criterion to measure performances of any machine f .
• We use a cost function ` : Y × Y → R+ such that{

`(y , y ′) = 0 if y = y ′

`(y , y ′) > 0 if y 6= y ′.

Interpretation

`(y , y ′) measure the cost (error) between one prediction y ′ and one
observation y .

19
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Statistical framework

• One observation = one random variable (X ,Y ) with an unknown
probability distribution P.

• P represents both the possible values of (X ,Y ) and the probabilities
attached to theses values.

Global performance of a machine f

• For a given cost function ` : Y × Y → R+, we can measure the global
(for all possible values of X and Y ) performance of a machine
f : X → Y by

`(Y , f (X )).

• Technical problem: this function is random =⇒ (very) difficult to
minimize.
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Optimal machine

Risk of a machine
We measure the performance of a machine f : X → Y by its risk

R(f ) = E[`(Y , f (X ))]

Theoretical problem

• For the cost function ` : Y × Y → R+, theoretical problem is to find

f ? ∈ argmin
f
R(f ).

• Such a function f ? (if it exists) is called the optimal machine for the
cost function `.
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In practice...

• The optimal machine f ? generally depends on the unknown probability
distribution P of (X ,Y )

=⇒ f ? is unknown in practice.

• Statistician’s job consists in finding a good estimate fn = fn(.,Dn) of
f ?=⇒ we have to find fn such that R(fn) ≈ R(f ?).

Definition

• We say that the estimate (fn)n is universally consistant if for any
distribution P

lim
n→∞

R(fn) = R(f ?).

• Interpretation: the risk of fn comes closer to the optimal risk as n
grows.
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Choice of the cost function `

• The proposed mathematical framework implies that a machine is
performant with respect to a criterion (represented by the cost
function `).

• It means that a machine f could be efficient for a cost function `1
(R1(f ) small) but not for another cost function `2 (R2(f ) large).

Important conclusion
In practice, it is crucial to choose a relevant cost function for the problem
we are faced.
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Quadratic risk

• In regression (Y = R), quadratic cost is often used. It is defined by

` : R× R→ R+

(y , y ′) 7→ (y − y ′)2

• Quadratic risk for a machine or regression function f : X → R is thus
defined by

R(f ) = E((Y − f (X ))2).

• The winner
f ?(x) = E[Y |X = x ]

is called the optimal regression function.
• Indeed, ∀f : X → R, we have

R(f ?) = E[(Y − f ?(X ))2] ≤ E[(Y − f (X ))2] = R(f ).

26
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Universal consistency

• Problem: f ? is unknown in practice. We have ton find an estimate
fn(x) = fn(x ,Dn) such that fn(x) ≈ f ?(x).

Definition
fn is universally consistant if

lim
n→+∞

R(fn) = R(f ?)

for any distribution of (X ,Y ).
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Error probability

• Binary classification means that output can only take 2 values
(Y = {−1, 1}). In this case, we often use the 0-1 loss function:

` : {−1, 1} × {−1, 1} → R+

(y , y ′) 7→ 1y 6=y ′

• The risk for a classification rule f : X → {−1, 1} is given by

R(f ) = E(1f (X )6=Y ) = P(f (X ) 6= Y ).

• The winner (called the Bayes rule) is

f ?(x) =

{
−1 if P(Y = −1|X = x) ≥ P(Y = 1|X = x)

1 otherwise.

• For any classification rule f ,

R(f ?) = P(f ?(X ) 6= Y ) ≤ P(f (X ) 6= Y ) = R(f ).
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Universal consistency

• Problem: f ? is unknown in practice. We have to find fn(x) = fn(x ,Dn)

such that fn(x) ≈ f ?(x).

Definition

(fn)n is universally consistent if

lim
n→∞

R(fn) = R(f ?)

for any distribution of (X ,Y ).

=⇒ See Exercise 1 - IML0.
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Scoring function

• Always in binary classification (Y = {−1, 1}).

• But... instead of a classification rule f : X → {−1, 1}, we want to find
a function S : X → R such that

S(x)

P(Y = 1) small P(Y = 1) large

• Such a function is a score function: instead of predicting the label y of
a new x ∈ X , we provide a score S(x) with
• large values if we think that x is 1;
• small values if we think that x is -1.
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Perfect and random scores
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Y

●

●

0

1

Definition

• Perfect score: S is perfect if there exists s? such that

P(Y = 1|S(X ) ≥ s?) = 1 and P(Y = −1|S(X ) < s?) = 1.

• Random score: S is random if S(X ) and Y are independents.
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Link between a score and a classification rule

• For a given score S and a threshold s, we obtain a classification rule:

fs(x) =

{
1 if S(x) ≥ s

−1 otherwise.

• We have

fs(X ) = −1 fs(X ) = 1

Y = −1 OK E1

Y = 1 E2 OK

• For any threshlod s, we can define 2 errors:

α(s) = P(fs(X ) = 1|Y = −1) = P(S(X ) ≥ s|Y = −1)

and

β(s) = P(fs(X ) = −1|Y = 1) = P(S(X ) < s|Y = 1).
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We can also define

• Specificity: sp(s) = P(S(X ) < s|Y = −1) = 1− α(s);

• Sensibility: se(s) = P(S(X ) ≥ s|Y = 1) = 1− β(s).

Performance of a score

Visualize errors α(s) and β(s) on a same graph for all thresholds s.
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ROC curve

• Idea: define a 2-dimensionnel graph to represent errors α(s) and β(s)

for all values of s.

Definition
The ROC curve of a score S is the parametrized curve defined by{

x(s) = α(s) = 1− sp(s) = P(S(X ) > s|Y = −1)

y(s) = 1− β(s) = se(s) = P(S(X ) ≥ s|Y = 1)

Remark

• For any score S : x(−∞) = y(−∞) = 1 and x(+∞) = y(+∞) = 0.

• For a perfect score: x(s?) = 0 and y(s?) = 1.

• For a random score: x(s) = y(s) ∀s.
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Interpretation
We measure performance of a score by its ability to approach the line
y = 1 as fast as possible.
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AUC

Definition

• Area Under ROC for a score S , denoted AUC (S) is often used to
measure performance of a S .

• Perfect score: AUC (S) = 1. Random score: AUC (S) = 1/2.

Proposition

• Let (X1,Y1) et (X2,Y2) be 2 i.i.d. observations. Then

AUC (S) = P(S(X1) ≥ S(X2)|(Y1,Y2) = (1,−1)).

Conclusion

AUC (S) measures the probability that S correctly orders two observations
with different labels.
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Example
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> df1 %>% group_by(Scores) %>% summarize(auc(D,M))
1 Perfect 1.0000000
2 random 0.5000000
3 S1 0.8999824
4 S2 0.6957177
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Optimal score

• AUC (S) can be seen as a cost function for a score S ;

• Question: is there an optimal score S? for this cost function?

Theorem ([Clémençon et al., 2008])

Let S?(x) = P(Y = 1|X = x), then for any score S we have

AUC (S?) ≥ AUC (S).

Consequence

We have to find a "good" estimate Sn(x) = Sn(x ,Dn) of

S?(x) = P(Y = 1|X = x).
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Summary

Cost `(y , f (x)) Risk E[`(Y , f (X ))] Winner f ?

Regression (y − f (x))2 E[Y − f (X )]2 E[Y |X = x ]

Binary class. 1y 6=f (x) P(Y 6= f (X )) Bayes rule

Scoring AUC (S) P(Y = 1|X = x)
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Reminder

• n observations (X1,Y1), . . . , (Xn,Yn) i.i.d in X × Y.

Goal

Given a cost function ` : Y × Y → R+, we search a machine
fn(x) = fn(x ,Dn) closed to the optimal machine f ? defined by

f ? ∈ argmin
f
R(f )

where R(f ) = E[`(Y , f (X ))].

Question

Given a machine fn, what can we say about its risk R(fn)?
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Empirical risk

• Since the distribution of (X ,Y ) is unknown, we can’t compute
R(fn) = E[`(Y , fn(X ))].

• First idea: R(fn) is an expectation, estimate it by its empirical version
(law of large numbers)

Rn(fn) =
1
n

n∑
i=1

`(Yi , fn(Xi )).

Problem

• Dn has already been used to construct the machine fn =⇒ LLN does
not apply!

• Consequence: Rn(fn) generally underestimates R(fn).

One solution
Cross validation or bootstrap approaches.
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Validation hold hout

• The simplest approach.
• It consists in splitting the data Dn into:

1. a learning or training set Dn,train used to learn a machine fn ;
2. a validation or test set Dn,test to estimate the risk of fn.

Algorithm

Inputs. Dn: data, {T ,V}: a partition of {1, . . . , n}.

1. Learn the machine with Dn,train = {(Xi ,Yi ) : i ∈ T } =⇒ fn,train ;

2. Compute R̂n(fn) = 1
|V|
∑

i∈V `(Yi , fn,train(Xi )).

Comments
ntrain and ntest should be large enough to

1. fit fn,train;

2. estimate its risk R(fn,train).
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|V|
∑

i∈V `(Yi , fn,train(Xi )).

Comments
ntrain and ntest should be large enough to

1. fit fn,train;

2. estimate its risk R(fn,train).
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K fold cross-validation

• Idea: repeat validation hold out algorithm on each element of a data
partition.

Algorithme - CV
Inputs. Dn: data, K an integer ;

1. Define a random partition {I1, . . . , IK} of {1, . . . , n} ;
2. For k = 1, . . . ,K

2.1 Itrain = {1, . . . , n}\Ik and Itest = Ik ;
2.2 Learn the machine with Dn,app = {(Xi ,Yi ) : i ∈ Iapp} =⇒ fn,k ;
2.3 Let fn(Xi ) = fn,k(Xi ) for i ∈ Itest ;

3. Output

R̂n(fn) =
1
n

n∑
i=1

`(Yi , fn(Xi )).
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Comments

• More useful than validation hold out when n is small.
• More accurate but more time consuming.
• K has to be chosen by the user (we often set K = 10).

Leave one out

• When K = n, we obtain leave one out cross validation.

• Risk is estimated by

R̂n(fn) =
1
n

n∑
i=1

`(Yi , f
i
n (Xi ))

where f in stands for the machine defined on Dn after deleted the ith
observation.

• Exercises 1-3, IML1.
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Outline

1. Motivations

2. Mathematical framework for statistical learning

3. Some criterion for regression and supervised classification

Regression

Binary classification

Scoring

4. Estimating the risk

5. Overfitting

6. Bibliography
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• Most of statistical learning algorithms depends on parameters (λ).

Examples

• number of input variables in linear and logistic models.

• penalty parameters for lasso and ridge regressions.

• depth for tree algorithms.

• number of nearest neighbors.

• bandwidth of kernel regression estimators.

• number of iterations for boosting algorithms.

• ...

• The choice of theses parameters reveals crucial for the performance of
the machine.
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• Parameter λ often measures model complexity:

Model complexity

• λ small =⇒ restrictive model =⇒ bad fitting =⇒ bias ↗, variance ↘
• λ large =⇒ flexible (complex) model =⇒ overfitting =⇒ bias ↘,

variance ↗

Overfitting

Good fitting on the training data (i.e. f (Xi ) = Yi ) but poor predictive
performances on new individuals.
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Test error

OVERFITTING

Train error

Complexity (λ)
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Overfitting for regression
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Overfitting for regression
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Overfitting for supervised classification
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Overfitting for supervised classification
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Mathematical framework

• n i.i.d observations (X1,Y1), . . . , (Xn,Yn) in X × Y.
• ` : Y × Y → R+ cost function.

Problem

Find a good estimate fn(.) = fn(.,Dn) of

f ? ∈ argmin
f
R(f ) = E[`(Y , f (X ))].

Model

• Modelize remains to fix a class of functions F and to assume that
f ? ∈ F .
• Modelize = make an assumption.
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f ?

F

f̂

Given (X1,Y1), . . . , (Xn,Yn), find the best

machine f ∈ F .

R(f̂ )−R? =R(f̂ )− inf
f ∈F
R(f ) + inf

f ∈F
R(f )−R?.

=Estimation error + Approximation error.

Remarks

• These two terms vary in opposite directions.

• Statistician’s job: trade-off between these two terms.
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Parametric and non parametric

Definition

• If F = {fθ : θ ∈ Θ} with Θ of finite dimension, then the model is
parametric.

• If F is an infinite dimensional space, then the model is non-parametric.

Remark

• Non-parametric seems more interesting (since less restrictive).

• There is a price to be paid... More difficult to estimate for such models.

• Loss of accuracy in NP models. In this part, we will study this loss.
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The linear model

• In regression with X = Rd , the linear model is the parametric
reference model.

• This model makes the assumption that the regression function is linear:

m?(x) = E[Y |X = x ] = β1x1 + . . .+ βdxd .

• Or equivalently
Y = β1X1 + . . .+ βdXd + ε

where E[ε|X = x ] = 0 and V[ε|X = x ] = σ2.

Remark

Estimate m? ⇐⇒ estimate β ∈ Rd (finite dimension =⇒ parametric
model).
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Some properties

• Least squares estimates minimize

n∑
i=1

ε2i =
n∑

i=1

(Yi − (β1Xi1 + . . .+ βdXid))2.

The solution is given by

β̂n = (XtX)−1XtY.

• Regression function m? is thus estimated by

m̂n(x) = β̂1x1 + . . .+ β̂dxd .
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Assumption
Under some technical assumptions, we prove that

• E[β̂] = β and V[β̂] = (XtX)−1σ2.

We deduce that (exercise 2, IML0)

E[‖β̂ − β‖2] = O
(
1
n

)
and E[(m̂n(x)−m?(x))2] = O

(
1
n

)
.

Remark

• Least squares estimates achieve the parametric rate (1/n).

• Moreover, if errors terms εi , i = 1 . . . , n are Gaussian, we can compute
the distribution of the least squares estimates (confidence intervals,
test statistics...).

• See [Grob, 2003, Cornillon and Matzner-Løber, 2011] for more
information.
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Example

• Linear model to explain ozone concentration.

> model_lin <- lm(V4~V5+V6+V7+V8+V9+V10+V11+V12+V13,data=Ozone)
> summary(model_lin)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 59.9517553 38.3286940 1.564 0.119421
V5 -0.0139111 0.0072511 -1.918 0.056527 .
V6 0.0276862 0.1741433 0.159 0.873847
V7 0.0808740 0.0237694 3.402 0.000812 ***
V8 0.1503404 0.0692994 2.169 0.031272 *
V9 0.5253439 0.1247136 4.212 3.87e-05 ***
V10 -0.0010052 0.0003944 -2.549 0.011586 *
V11 0.0049796 0.0147772 0.337 0.736501
V12 -0.1543882 0.1192917 -1.294 0.197140
V13 -0.0033951 0.0048963 -0.693 0.488883
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Logistic model

• Logistic model is the "brother" of the linear model in the context of
binary classification (Y = {−1, 1}).

• This model makes the assumption that (the logit transformation of)
the probability p(x) = P(Y = 1|X = x) is linear:

logit p(x) = log
p(x)

1− p(x)
= β1x1 + . . .+ βdxd = x tβ.

• β = (β1, . . . , βd) ∈ Rd =⇒ parametric model.

• Unknown parameters β1, . . . , βd are estimated by maximizing the
(log)-likelihood:

Ln(β) =
n∑

i=1

{
yix

t
i β − log(1 + exp(x ti β))

}
.
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Some properties

Theorem [Fahrmeir and Kaufmann, 1985]
Under technical assumptions we have

1. the ML estimate {β̂n}n is consistant: β̂n
P→ β;

2. the ML estimate {β̂n}n is asymptotically gaussian:

√
n(β̂n − β)

L→ N (0, I−1(β)).

3. Rate of convergence:

E[‖β̂ − β‖2] = O
(
1
n

)
.

Important remark

Again, the ML estimate achieves the parametric rate (1/n).
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Example

• In R, we can fit a logistic model with the glm function.

> model_log <- glm(type~.,data=spam,family=binomial)
> summary(model_log)$coefficients[1:5,]

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.5686144 0.1420362 -11.043767 2.349719e-28
make -0.3895185 0.2314521 -1.682933 9.238799e-02
address -0.1457768 0.0692792 -2.104194 3.536157e-02
all 0.1141402 0.1103011 1.034806 3.007594e-01
num3d 2.2515195 1.5070099 1.494031 1.351675e-01
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Presentation

• Logistic regression directly modelizes the parameter of the distribution
of Y |X = x .

• Linear discriminant analysis do the opposite. It consists in

• modelizing the distributions of X |Y = j for j = 1, . . . ,K by gaussian
distributions fj(x).

• calculating the posterior distribution Y |X = x with Bayes formula :

P(Y = j |X = x) =
πj fj(x)∑K
`=1 π`f`(x)

where πj = P(Y = j), j = 1, . . . ,K .
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Example: Fisher’s iris problem

• Explain iris species by lengths and widths of petals and sepals.

• 5 variables :
• the target variable species (categorical).

• lengths and widths of petals and sepals.

> summary(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width

Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Median :1.300
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

Species
setosa :50
versicolor:50
virginica :50
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• We first want to explain Species by
• We can draw the following boxplot.

> ggplot(iris)+aes(x=Species,y=Petal.Length)+geom_boxplot()+theme_bw()
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Visualize densities

• geom_density allows to visualize conditional distributions of X |Y = j ,
j = 1, 2, 3.

> ggplot(iris)+aes(x=Petal.Length,color=Species)+geom_density(size=1)
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A model

• The three densities on the graph look like Gaussian densities.

• Let X =Petal.Length and Y= Species. We assume that distributions
of X given Y = k are Gaussians N (µk , σ

2), k = 1, 2, 3.

• Densities of X |Y = k are thus given by

fX |Y=k(x) =
1√
2πσ

exp

(
−(x − µk)2

2σ2

)
.
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Estimation

• To obtain posterior probabilities P(Y = k|X = x), we have to
estimate:

• parameters µk et σ2 of the Gaussian distributions;
• prior probabilities πk = P(Y = k).

Estimators
These quantities are naturally estimated by

µ̂k =
1
nk

∑
i :Yi=k

Xi , σ̂2 =
1

n − 2

K∑
k=1

∑
i :Yi=k

(Xi − µ̂k)2

π̂k =
nk
n

where nk =
n∑

i=1

1{Yi=k}.
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Example with R

> library(MASS)
> model <- lda(Species~Petal.Length,data=iris)
> model
Call:
lda(Species ~ Petal.Length, data = iris)

Prior probabilities of groups:
setosa versicolor virginica

0.3333333 0.3333333 0.3333333

Group means:
Petal.Length

setosa 1.462
versicolor 4.260
virginica 5.552

Coefficients of linear discriminants:
LD1

Petal.Length 2.323774
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Making predictions

• predict function allows to predict species of new iris:

> don_pred
Sepal.Length Sepal.Width Petal.Length Petal.Width

5.0 3.6 1.4 0.2
5.5 2.4 3.7 1.0
7.1 3.0 5.9 2.1
6.7 3.3 5.7 2.5

• We just have to enter

> predict(model,newdata=don_pred)
$class
[1] setosa versicolor virginica virginica
Levels: setosa versicolor virginica
$posterior

setosa versicolor virginica
1.000000e+00 2.589892e-10 6.170197e-21
3.123152e-06 9.997752e-01 2.217125e-04
1.113402e-23 9.723296e-04 9.990277e-01
9.198362e-22 3.913109e-03 9.960869e-01
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• Goal: explain iris specie by the 4 explanatory variables Sepal.Length,
Sepal.Width, Petal.Length, Petal.Width. We denote by
X1,X2,X3,X4 these 4 variables and X = (X1,X2,X3,X4).

• The approach is similar to the previous case (1 variable)

1. We model distributions of X |Y = k by Gaussian multivariate
distributions.

2. We use Bayes formula to obtain posterior probabilities
P(Y = k|X = x).
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distributions.

2. We use Bayes formula to obtain posterior probabilities
P(Y = k |X = x).

80



LDA: general case

• Distributions of X |Y = k are are assumed to be Gaussians N (µk ,Σ)

where µk ∈ Rp and Σ is a p × p definite positive matrix. Densities of
X |Y = k are thus given by:

fX |Y=k(x) =
1

(2πdet(Σ))p/2
exp

(
−1
2

(x − µk)tΣ−1(x − µk)

)
.

• Posterior probabilities P(Y = k |X = x) are obtained thanks to the
Bayes formula

P(Y = k|X = x) =
πk fX |Y=k(x)

f (x)

where f (x), the density of X , is computed from fX |Y=k(x) and from
prior probabilites πk = P(Y = k).
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Estimation

• We again need to estimate unknown parameters of the model:

• mean vectors µk , k = 1, . . . ,K and covariance matrix Σ of the Gaussian
distributions;

• prior probabilities πk = P(Y = k).

Estimators
They are defined by

µ̂k =
1
nk

∑
i :Yi=k

Xi , Σ̂ =
1

n − K

K∑
k=1

∑
i :Yi=k

(Xi − µ̂k)(Xi − µ̂k)t

π̂k =
nk
n

with nk =
n∑

i=1

1{Yi=k}.
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Example with R

> full_model<- lda(Species~.,data=iris)
> full_model
Call:
lda(Species ~ ., data = iris)

Prior probabilities of groups:
setosa versicolor virginica

0.3333333 0.3333333 0.3333333

Group means:
Sepal.Length Sepal.Width Petal.Length Petal.Width

setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026
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Making predictions

• predict function allow to predict species for new iris
> don_pred

Sepal.Length Sepal.Width Petal.Length Petal.Width
5.0 3.6 1.4 0.2
5.5 2.4 3.7 1.0
7.1 3.0 5.9 2.1
6.7 3.3 5.7 2.5

• We just have to enter

> predict(model_complet,newdata=don_pred)
$class
[1] setosa versicolor virginica virginica
Levels: setosa versicolor virginica

$posterior
setosa versicolor virginica

5 1.000000e+00 1.637387e-22 1.082605e-42
82 9.648075e-16 9.999997e-01 3.266704e-07
103 1.231264e-42 2.592826e-05 9.999741e-01
145 4.048249e-46 2.524984e-07 9.999997e-01
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Classification rule

• Reminder: LDA allows to estimate posterior probabilities:

P(Y = k |X = x).

• Classification rule: we choose the group which maximizes these
probabilities

ĝ(x) = k if and only if P(Y = k |X = x) ≥ P(Y = j |X = x), j 6= k .

• Boundary between 2 groups: set of points x such that
P(Y = k |X = x) = P(Y = j |X = x).

85



Classification rule

• Reminder: LDA allows to estimate posterior probabilities:

P(Y = k |X = x).

• Classification rule: we choose the group which maximizes these
probabilities
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• Or

log
P(Y = k |X = x)

P(Y = `|X = x)
= log

fk(x)

f`(x)
+ log

πk
π`

= log
πk
π`
− 1

2
(µk + µ`)

tΣ−1(µk − µ`)

+ x tΣ−1(µk − µ`) (1)

Conclusion
Bondary between 2 groups is linear!
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Example

• Boundary between "Setosa" and "Versicolor" for 2 variables.

> iris1 <- iris[iris$Species%in%c("setosa","versicolor"),c(3,2,5)]
> ggplot(iris1)+aes(x=Petal.Length,y=Sepal.Width,color=Species)+geom_point()
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Boundary two classes
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Example - 3 labels

• We do the same for the 3 species (3 classes).

> ggplot(iris)+aes(x=Petal.Length,y=Sepal.Width,color=Species)+geom_point()
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Boundaries
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Linear discriminant functions

Definition
Linear discriminant functions are defined by

δk(x) = x tΣ−1µk −
1
2
µtkΣ−1µk + log πk , k = 1, . . . ,K .

Propriété
Thanks to (1), we deduce

argmax
k

P(Y = k |X = x) = argmax
k

δk(x).

Conclusion
Maximising posterior probabilities is similar to maximising linear
discriminant functions.
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Outline
1. Some parametric methods

Linear and logistic models

Linear discriminant analysis

Just one explanatory variable

LDA: general case

2. Some nonparametric methods

Kernel and nearest neighbors methods

The curse of dimensionality
3. Empirical risk minimization

Setting

Caret package
4. Bibliography
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Local averaging

Idea

• Parametric models require strong assumptions on the function to
estimate.

• Nonparametric approaches try to be less restrictive.

• These methods consists of studying the data on a neighborhood of the
points where we want to estimate the target function.

• For both regression and supervised classification, nonparametric
approaches rely on local averaging:

f̂n(x) =
n∑

i=1

Wni (x)Yi

where the weights Wni depend on the algorithm.
• Wni large if Xi is closed to x .
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Kernel estimate

• (X1,Y1), . . . , (Xn,Yn) i.i.d. with the same law as (X ,Y ).

• Goal: estimate m?(x) = E[Y |X = x ].
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• The estimator

m̂n(x) =Average(Yi : Xi ∈ [x − h, x + h]) =

n∑
i=1

1x−h≤Xi≤x+hYi

n∑
i=1

1x−h≤Xi≤x+h

.

Definition

Let h > 0 and K : X → R+. The kernel estimate with bandwidth h and
kernel K is defined by

m̂n(x) =

n∑
i=1

K

(
Xi − x

h

)
Yi

n∑
i=1

K

(
Xi − x

h

) .
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Choice of the bandwidth

• Usual kernels when X = Rd :
1. Uniform: K (x) = 1‖x‖≤1 ;
2. Gaussian: K (x) = exp(−‖x‖2) ;
3. Epanechnikov: K (x) = 3

4 (1− ‖x‖2)1‖x‖≤1.

=⇒ provide weights according to the distance of x .

• The choice of the bandwidth h reveals crucial for the performance of
the estimate:
1. h large: steady estimator, low variance, large bias;
2. h small: unsteady estimator ("overfitting"), large variance, small bias.

Conclusion
h governs the complexity of the estimate.

97



Choice of the bandwidth

• Usual kernels when X = Rd :
1. Uniform: K (x) = 1‖x‖≤1 ;
2. Gaussian: K (x) = exp(−‖x‖2) ;
3. Epanechnikov: K (x) = 3

4 (1− ‖x‖2)1‖x‖≤1.

=⇒ provide weights according to the distance of x .

• The choice of the bandwidth h reveals crucial for the performance of
the estimate:
1. h large:

steady estimator, low variance, large bias;
2. h small: unsteady estimator ("overfitting"), large variance, small bias.

Conclusion
h governs the complexity of the estimate.

97



Choice of the bandwidth

• Usual kernels when X = Rd :
1. Uniform: K (x) = 1‖x‖≤1 ;
2. Gaussian: K (x) = exp(−‖x‖2) ;
3. Epanechnikov: K (x) = 3

4 (1− ‖x‖2)1‖x‖≤1.

=⇒ provide weights according to the distance of x .

• The choice of the bandwidth h reveals crucial for the performance of
the estimate:
1. h large: steady estimator, low variance, large bias;
2. h small:

unsteady estimator ("overfitting"), large variance, small bias.

Conclusion
h governs the complexity of the estimate.

97



Choice of the bandwidth

• Usual kernels when X = Rd :
1. Uniform: K (x) = 1‖x‖≤1 ;
2. Gaussian: K (x) = exp(−‖x‖2) ;
3. Epanechnikov: K (x) = 3

4 (1− ‖x‖2)1‖x‖≤1.

=⇒ provide weights according to the distance of x .

• The choice of the bandwidth h reveals crucial for the performance of
the estimate:
1. h large: steady estimator, low variance, large bias;
2. h small: unsteady estimator ("overfitting"), large variance, small bias.

Conclusion
h governs the complexity of the estimate.

97



Example

• We generate data (Xi ,Yi ), i = 1, . . . , n = 200 according to the model

Yi = sin(Xi ) + εi , i = 1, . . . , n

where Xi has a uniform distribution on [−2π, 2π], εi has a Gaussian
distribution N (0, 0.22).

> n <- 200; set.seed(1234)
> X <- runif(n,-2*pi,2*pi)
> set.seed(5678)
> eps <- rnorm(n,0,0.2)
> Y <- sin(X)+eps
> df <- data.frame(X=X,Y=Y)
> x <- seq(-2*pi,2*pi,by=0.01)
> df1 <- data.frame(x=x,y=sin(x))
> ggplot(df1)+aes(x=x,y=y)+

geom_line(size=1)+
geom_point(data=df,aes(x=X,y=Y))
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• locpoly function from kernSmooth package allows to fit kernel
estimates.

> h1 <- 0.5;h2 <- 3;h3 <- 0.01
> fx1 <-locpoly(X,Y,bandwidth=h1)
> fx2 <-locpoly(X,Y,bandwidth=h2)
> fx3 <-locpoly(X,Y,bandwidth=h3)
> df1 <- data.frame(x=x,y=sin(x))
> df2 <- data.frame(x=fx1$x,

"H0.5"=fx1$y,"H3"=fx2$y,
"H0.01"=fx3$y)

> df22 <- melt(df2,id.vars=1)
> names(df22)[2:3] <- c("fenêtre",

"y")
> ggplot(df22)+aes(x=x,y=y)+

geom_line(aes(color=fenêtre,
lty=fenêtre))+geom_line

(data=df1,aes(x=x,y=y),size=1)
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• Exercise 4-IML1.
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> df22 <- melt(df2,id.vars=1)
> names(df22)[2:3] <- c("fenêtre",

"y")
> ggplot(df22)+aes(x=x,y=y)+

geom_line(aes(color=fenêtre,
lty=fenêtre))+geom_line

(data=df1,aes(x=x,y=y),size=1)
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• Exercise 4-IML1.
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Nearest neighbors algorithm

Definition
Let k ≤ n an integer. The k-nearest neighbors estimate is defined by

m̂n(x) =
1
k

∑
i∈knn(x)

Yi

where for x ∈ X

knn(x) = {i : Xi is among the knn of x among {X1, . . . ,Xn}}.

Remark
Once again, k reveals crucial for the performance of the estimate:

1. k large: steady estimate, low variance, high bias;

2. k small: "overfitting", large variance, small bias.

=⇒ k governs the complexity of the model.
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Example

• knn.reg function from FNN package allows to fit k-nearest neighbors
estimate.

> k1 <- 10; k2 <- 100; k3 <- 1
> fx1 <- knn.reg(X,as.matrix(x),y=Y,k=k1)
> fx2 <- knn.reg(X,as.matrix(x),y=Y,k=k2)
> fx3 <- knn.reg(X,as.matrix(x),y=Y,k=k3)
> df1 <- data.frame(x=x,y=sin(x))
> df2 <- data.frame(x=x,"K10"=fx1$pred,

"K100"=fx2$pred,"K1"=fx3$pred)
> df22 <- melt(df2,id.vars=1)
> names(df22)[2:3] <- c("KNN","y")
> ggplot(df22)+aes(x=x,y=y)+

geom_line(aes(color=KNN,lty=KNN))+
geom_line(data=df1,aes(x=x,y=y),size=1)
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Supervised classification

• Kernel and nearest neighbors estimates have been presented in
regression (Y = R).

• Approaches are similar in supervised classification:

1. neighborhoods are defined in the same way;

2. (only) change:

instead of averaging the Yi in a neighborhood of x , we
make a majority vote.
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Kernel for supervised classification
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k-nn for supervised classification
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The k-nn rule

• Let k ≤ n, the k-nn rule apply a majority vote to assess the group of
new individuals:

ĝn(x) = MV (Yi : i ∈ knn(x)) = argmax
k∈Y

∑
i∈knn(x)

1Yi=k

where knn(x) = {i : Xi is among the knn of x among {X1, . . . ,Xn}}.

Remark
As for regression, the choice of k reveals crucial for the performance of
the estimate:

1. k large: "steady" estimate, small variance, large bias;

2. k small: "overfitting”, large variance, small bias.
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Example

• Goal: explain a binary variable Y by 2 continuous variables X1 and X2.
We have n = 2 000 observations.
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k-nn rules
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Conclusion
We clearly visualize how the choice of k is important.

107



k-nn rules

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X1

X2

label

0

1

1 NN

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X1

X2

label

0

1

3 NN

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X1

X2

label

0

1

80 NN

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X1

X2

label

1

1000 NN

Conclusion
We clearly visualize how the choice of k is important. 107



Consistency [Györfi et al., 2002]

• For both regression and supervised classification, kernel rules and
nearest neighbors rules are universally consistant (under weak
assumptions).

Theorem [Stone, 1977]

If k →∞ and k/n→ 0, then the k-nn rule is universally consistant.

Theorem [Devroye and Krzyżak, 1989]

If h→ 0 and nhd → +∞, then the kernel rule universally consistant.
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Rate of consistency [Györfi et al., 2002]

Nonparametric methods (always) suffer from the curse of dimensionality: as
the dimension d increases, we have less and less observations in the
neighborhoods of x =⇒

less and less accurate =⇒ slower convergence rate.

Theorem
We consider the regression problem (explain Y by X1, . . . ,Xd) and denote
by mn the k-nn estimate. Under technical assumptions, the quadratic risk
of mn satisfies (see exercise 3-IML0)

R(mn) = O
(
n−

2
d+2

)
.

Consequence

• d = 1: rate n−2/3, d = 5: rate n−2/7.

• In practice, nonparametric estimates are not efficient in high
dimensional spaces.
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Curse of dimensionality (Illustration)
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Choosing parameters

• Most of the machines depends on parameters.

Rules Parameters

k-nn k : number of neighbors
kernel h: bandwidth
trees depth

boosting number of iterations
... ...

• Selection of these parameters reveals crucial for the performances of
the estimates.

• Goal:
• define procedures which allow to automatically select these parameters;
• establish theoretical guarantees for these procedures (GB lecture).
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ERM strategy

Framework

• F a collection of machines.

• Risk for a machine f : R(f ) = E[`(Y , f (X ))].

• Goal: select f̂ in F such that

R(f̂ ) ≈ inf
f ∈F
R(f ).

ERM

• Estimate the risk of the machines in F (validation hold out, cross
validation...) =⇒ R̂n(f ).

• Choose the machine f̂ which minimizes the estimated risk R̂n(f ).
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Selecting k (k-nn rule)

• Data splitting:
• A learning or train set Dm = {(X1,Y1), . . . , (Xm,Ym)};
• A test set D` = {(Xm+1,Ym+1), . . . , (Xn,Yn)} with m + ` = n.

• Candidates: Gm = {gk , 1 ≤ k ≤ m} → k-nn rules using Dm.

• Risk: L(g) = P(g(X ) 6= Y ).

ERM Strategy
Choose ĝn which minmizes

1
`

n∑
i=m+1

1gk (Xi )6=Yi
.
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• Classification and regression training.

• This package allows to select machines and to estimate their
performances.

• More than 230 algorithms are available on caret:
http://topepo.github.io/caret/index.html

• We just have to specify:
• the method (logistic, k-nn, trees, randomForest...)
• a grid for the values of parameters (number of NN...)
• the risk or the cost function (error probability, AUC, quadratic risk...)
• how to estimate the risk (validation hold out, cross validation,

bootstrap...).
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Validation hold out i

> K_cand <- seq(1,500,by=20)
> library(caret)
> ctrl1 <- trainControl(method="LGOCV",number=1,index=list(1:1500))
> KK <- data.frame(k=K_cand)
> e1 <- train(Y~.,data=donnees,method="knn",trControl=ctrl1,tuneGrid=KK)
> e1
k-Nearest Neighbors

2000 samples
2 predictor
2 classes: ’0’, ’1’

No pre-processing
Resampling: Repeated Train/Test Splits Estimated (1 reps, 75%)
Summary of sample sizes: 1500
Resampling results across tuning parameters:

k Accuracy Kappa
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Validation hold out ii

1 0.620 0.2382571
21 0.718 0.4342076
41 0.722 0.4418388
61 0.718 0.4344073
81 0.720 0.4383195

101 0.714 0.4263847
121 0.716 0.4304965
141 0.718 0.4348063
161 0.718 0.4348063
181 0.718 0.4348063
201 0.720 0.4387158
221 0.718 0.4350056
241 0.718 0.4350056
261 0.722 0.4428232
281 0.714 0.4267894
301 0.714 0.4269915
321 0.710 0.4183621
341 0.696 0.3893130
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Validation hold out iii

361 0.696 0.3893130
381 0.690 0.3767090
401 0.684 0.3645329
421 0.686 0.3686666
441 0.686 0.3679956
461 0.684 0.3638574
481 0.680 0.3558050

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was k = 261.
> plot(e1)
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Validation hold out iv

#Neighbors

Ac
cu

ra
cy

 (R
ep

ea
ted

 Tr
ain

/Te
st 

Sp
lits

)

0.62

0.64

0.66

0.68

0.70

0.72

0 100 200 300 400 500

●

●

●

●
●

●
●

● ● ●
●

● ●

●

● ●

●

● ●

●

●
● ●

●

●

122



Cross validation i

> library(doMC)
> registerDoMC(cores = 3)
> ctrl2 <- trainControl(method="cv",number=10)
> e2 <- train(Y~.,data=dapp,method="knn",trControl=ctrl2,tuneGrid=KK)
> e2
k-Nearest Neighbors

1500 samples
2 predictor
2 classes: ’0’, ’1’

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 1350, 1350, 1350, 1350, 1350, 1350, ...
Resampling results across tuning parameters:

k Accuracy Kappa
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Cross validation ii

1 0.6280000 0.2519051
21 0.7333333 0.4623213
41 0.7273333 0.4503384
61 0.7360000 0.4682891
81 0.7353333 0.4673827

101 0.7313333 0.4596395
121 0.7306667 0.4584747
141 0.7366667 0.4703653
161 0.7340000 0.4654675
181 0.7306667 0.4585136
201 0.7313333 0.4597224
221 0.7333333 0.4638243
241 0.7333333 0.4637789
261 0.7306667 0.4581189
281 0.7320000 0.4604955
301 0.7246667 0.4452185
321 0.7166667 0.4283226
341 0.7120000 0.4183438
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Cross validation iii

361 0.7086667 0.4109784
381 0.7093333 0.4121146
401 0.7093333 0.4117108
421 0.7066667 0.4057889
441 0.7066667 0.4047529
461 0.6940000 0.3782209
481 0.6886667 0.3662798

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was k = 141.

> plot(e2)
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Cross validation iv
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Repeated cross-validation i

> ctrl3 <- trainControl(method="repeatedcv",repeats=5,number=10)
> e3 <- train(Y~.,data=dapp,method="knn",trControl=ctrl3,tuneGrid=KK)
> e3
k-Nearest Neighbors

1500 samples
2 predictor
2 classes: ’0’, ’1’

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 1350, 1350, 1350, 1350, 1350, 1350, ...
Resampling results across tuning parameters:

k Accuracy Kappa
1 0.6222667 0.2416680

21 0.7352000 0.4661220
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Repeated cross-validation ii

41 0.7312000 0.4580125
61 0.7310667 0.4580882
81 0.7321333 0.4606022

101 0.7329333 0.4626718
121 0.7326667 0.4623496
141 0.7328000 0.4628236
161 0.7345333 0.4663240
181 0.7344000 0.4660110
201 0.7322667 0.4616271
221 0.7324000 0.4619926
241 0.7326667 0.4624912
261 0.7310667 0.4591799
281 0.7282667 0.4530797
301 0.7248000 0.4454653
321 0.7170667 0.4292033
341 0.7118667 0.4181330
361 0.7112000 0.4163210
381 0.7109333 0.4154893
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Repeated cross-validation iii

401 0.7086667 0.4104291
421 0.7058667 0.4043432
441 0.7026667 0.3972028
461 0.6953333 0.3813444
481 0.6886667 0.3664347

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was k = 21.

> plot(e3)
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Repeated cross-validation iv
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Minimizing AUC i

> donnees1 <- donnees
> names(donnees1)[3] <- c("Class")
> levels(donnees1$Class) <- c("G0","G1")
> ctrl11 <- trainControl(method="LGOCV",number=1,index=list(1:1500),

classProbs=TRUE,summary=twoClassSummary)
> e4 <- train(Class~.,data=donnees1,method="knn",trControl=ctrl11,

metric="ROC",tuneGrid=KK)
> e4
k-Nearest Neighbors

2000 samples
2 predictor
2 classes: ’G0’, ’G1’

No pre-processing
Resampling: Repeated Train/Test Splits Estimated (1 reps, 75%)
Summary of sample sizes: 1500
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Minimizing AUC ii

Resampling results across tuning parameters:

k ROC Sens Spec
1 0.6190866 0.5983264 0.6398467

21 0.7171484 0.6903766 0.7432950
41 0.7229757 0.6861925 0.7547893
61 0.7200500 0.6945607 0.7394636
81 0.7255567 0.6945607 0.7432950

101 0.7319450 0.6903766 0.7356322
121 0.7382452 0.6945607 0.7356322
141 0.7353757 0.7029289 0.7318008
161 0.7308549 0.7029289 0.7318008
181 0.7351272 0.7029289 0.7318008
201 0.7340050 0.7029289 0.7356322
221 0.7324099 0.7071130 0.7279693
241 0.7349028 0.7071130 0.7279693
261 0.7365780 0.7071130 0.7356322
281 0.7349749 0.6987448 0.7279693
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Minimizing AUC iii

301 0.7356963 0.7029289 0.7241379
321 0.7341493 0.6861925 0.7318008
341 0.7343898 0.6527197 0.7356322
361 0.7306385 0.6527197 0.7356322
381 0.7301816 0.6359833 0.7394636
401 0.7270957 0.6276151 0.7356322
421 0.7255487 0.6317992 0.7356322
441 0.7258933 0.6192469 0.7471264
461 0.7220619 0.6150628 0.7471264
481 0.7236330 0.6108787 0.7432950

ROC was used to select the optimal model using the largest value.
The final value used for the model was k = 121.
> getTrainPerf(e4)

TrainROC TrainSens TrainSpec method
1 0.7382452 0.6945607 0.7356322 knn
> plot(e4)
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Minimizing AUC iv
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Summary

• Parametric: strong assumption but fast rates (1/n).

• Non parametric: less restrictive but slow rates plus curse of
dimensionality (1/n2/(d+2)).

• ERM strategy: select (automatically) parameters which minimizes the
estimated risk.

• Exercise 5, IML1.
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Linear model: variable selection and
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Framework

• (X1,Y1), . . . , (Xn,Yn) i.i.d. observations with the same distribution as
(X ,Y ) which takes values in X × Y;

• In this part, we assume X = Rd and Y = R or {−1, 1}.

Linear and logistic models

1. If Y = R,

m(x) = E[Y |X = x ] = β0 + β1x1 + . . .+ βdxd = x tβ.

2. If Y = {−1, 1},

logit p(x) = β0 + β1x1 + . . .+ βdxd = x tβ

where p(x) = P(Y = 1|X = x).
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Some limits

• 2 drawbacks in some situations:

1. prediction accuracy: LS and ML estimates can have large variance
(especially when d is large) and thus poor prediction accuracy.

2. interpretation: when d is large, we don’t know what are the most
important variables.

Goals

• Since we have more and more data, these drawbacks are occurring
more and more often.

• We need to develop new automatic procedures to select important
variables.
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more and more often.

• We need to develop new automatic procedures to select important
variables.
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An example

• We generate observations (xi , yi ), i = 1, . . . , 500 according to

Y = 1X1 + 0X2 + . . .+ 0Xq+1 + ε

where X2,Xq+1, . . . , ε are i.i.d. with law N (0, 1).

• We compute the LS estimator of β1 for 1000 replications. We draw
boxplot of these estimators for q = 10 and q = 400.

q=10 q=400

0.7
0.8

0.9
1.0

1.1
1.2

Conclusion
Large variance (thus loss of accuracy) when the number of unnecessary
variables increases.
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Size of the model

Test error

OVERFITTING

Train error

Complexity (λ)

Conclusion
The size of the model governs the bias/variance trade-off.

145



Size of the model

Test error

OVERFITTING

Train error

Complexity (λ)

Conclusion
The size of the model governs the bias/variance trade-off. 145



Outline

1. Subset selection

2. Penalized regression

Ridge regression

Lasso regression

Supervised classification

3. Bibliography

146



Best subset selection

• (X1,Y1), . . . , (Xn,Yn) i.i.d. with the same law as (X ,Y ) which takes
values in Rd × R;

• d input variables =⇒

2d candidate models.

The idea

1. Fit the 2d models;

2. Choose the one which optimizes a given criterion.

Algorithm : best subset selection

1. for k = 0, . . . , d :

1.1 Fit the

(
d

k

)
linear models with k variables;

1.2 Choose the model with the higher R2. DenoteMk this model.

2. Select, amongM0,M1, . . . ,Md , the best model according to a given
criterion.
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Some criteria

• AIC: Akaike Information Criterion

−2Ln(β̂) + 2d .

• BIC: Bayesian Information Criterion

−2Ln(β̂) + log(n)d .

• Adjusted R2:

R2
a = 1− n − 1

n − d + 1
(1− R2) where R2 =

SSR

SST
=
‖Ŷ− Ȳ1‖2

‖Y− Ȳ1‖2
.

• Mallows’s Cp:

Cp =
1
n

(
n∑

i=1

(Yi − Ŷi )
2 + 2d σ̂2

)
.
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R user

• regsubsets from leaps package allows to make best subset selection.

> library(leaps)
> reg.fit <- regsubsets(V4~V5+V6+V7+V8+V9+V10+V11+V12+V13,data=Ozone)
> summary(reg.fit)
1 subsets of each size up to 8
Selection Algorithm: exhaustive

V5 V6 V7 V8 V9 V10 V11 V12 V13
1 ( 1 ) " " " " " " "*" " " " " " " " " " "
2 ( 1 ) " " " " "*" " " "*" " " " " " " " "
3 ( 1 ) " " " " "*" " " "*" "*" " " " " " "
4 ( 1 ) " " " " "*" "*" "*" "*" " " " " " "
5 ( 1 ) "*" " " "*" "*" "*" "*" " " " " " "
6 ( 1 ) "*" " " "*" "*" "*" "*" " " "*" " "
7 ( 1 ) "*" " " "*" "*" "*" "*" " " "*" "*"
8 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*"
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> plot(reg.fit,scale="Cp")
> plot(reg.fit,scale="bic")
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• Mallows’s Cp selects:

Y = β0 + β1V5 + β2V7 + β3V8 + β4V9 + β5V10 + β6V12 + ε.

• BIC selects:

Y = β0 + β1V5 + β2V7 + β3V8 + β4V9 + β5V10 + ε.
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Stepwise selection

• BSS considers all models (advantage).

• Drawback: it becomes infeasible (too long computational time) when
d is large (d ≥ 40).

• When d is large, we can seek a good path through all possible subsets.

• Stepwise selection procedures define recursive models by adding or
deleting one variable at each step.
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Forward stepwise selection

1. LetM0 the null model (only the intercept);

2. for k = 0, . . . , d − 1:
2.1 Define the d − k models by adding one variable inMk ;
2.2 Choose, among those d − k models, the one which maximizes the R2.

DenoteMk+1 this model.

3. Select, amongM0, . . . ,Md , the best model according to a given
criterion.

Backward stepwise selection

1. LetMd the full model (d variables);

2. For k = d , . . . , 1:
2.1 Define the k models by deleting one variable inMk ;
2.2 Choose, among those k models, the one which maximizes R2. Denote
Mk−1 this model.

3. Select, amongM0, . . . ,Md , the best model according to a given
criterion.
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R user

• We just have to add the argument method="forward" or
method="backward" in regsubsets to make subset selection.

> reg.fit.for <- regsubsets(V4~V5+V6+V7+V8+V9+V10+V11+V12+V13,data=Ozone,
method="forward")

> reg.fit.back <- regsubsets(V4~V5+V6+V7+V8+V9+V10+V11+V12+V13,data=Ozone,
method="backward")

> summary(reg.fit.for)

V5 V6 V7 V8 V9 V10 V11 V12 V13
1 ( 1 ) " " " " " " "*" " " " " " " " " " "
2 ( 1 ) " " " " "*" "*" " " " " " " " " " "
3 ( 1 ) " " " " "*" "*" "*" " " " " " " " "
4 ( 1 ) " " " " "*" "*" "*" "*" " " " " " "
5 ( 1 ) "*" " " "*" "*" "*" "*" " " " " " "
6 ( 1 ) "*" " " "*" "*" "*" "*" " " "*" " "
7 ( 1 ) "*" " " "*" "*" "*" "*" " " "*" "*"
8 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*"

> summary(reg.fit.back)

V5 V6 V7 V8 V9 V10 V11 V12 V13
1 ( 1 ) " " " " " " " " "*" " " " " " " " "
2 ( 1 ) " " " " "*" " " "*" " " " " " " " "
3 ( 1 ) " " " " "*" " " "*" "*" " " " " " "
4 ( 1 ) " " " " "*" "*" "*" "*" " " " " " "
5 ( 1 ) "*" " " "*" "*" "*" "*" " " " " " "
6 ( 1 ) "*" " " "*" "*" "*" "*" " " "*" " "
7 ( 1 ) "*" " " "*" "*" "*" "*" " " "*" "*"
8 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*"
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> plot(reg.fit.for,scale="bic")
> plot(reg.fit.back,scale="bic")
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Remark
For this example, forward and backward selection provide the same model
(it’s not always the case).
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Binary classification

• Best subset and stepwise selection have been proposed for regression
(Y = R).

• These approaches are exactly the same for binary classification
(Y = {−1, 1}).

• With R, we can use:
• bestglm function from the bestglm package for best subset selection.
• step function for stepwise selection.

• Exercise 1-2, IML2.
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• For large values of d , least square estimates in the linear model

Y = β1X1 + . . .+ βdXd + ε

often exhibits high variance (overfitting).

Penalized regression: the idea

• Constraint the values of the LS estimates to reduce the variance (even
if we increase the bias).

• How? By imposing a constraint on the size of the coefficients:

β̂pen = argmin
β

n∑
i=1

yi −
d∑

j=1

xijβj

2

subject to ‖β‖? ≤ t.
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Questions

• Which norm for the constraint?

• How should we select t?
• t small =⇒ strong constraint (β̂j ≈ 0) ;
• t large =⇒ small constraint (β̂j ≈ β̂j,LS).
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• Ridge regression shrinks the regression coefficients by constraining the
euclidean norm of the parameters.

Definition

1. Ridge estimates β̂R minimize

n∑
i=1

yi − β0 −
d∑

j=1

xijβj

2

subject to
d∑

j=1

β2j ≤ t (2)

2. or equivalently by imposing a penalty on the size of the coefficients

β̂R = argmin
β


n∑

i=1

yi − β0 −
d∑

j=1

xijβj

2

+ λ
d∑

j=1

β2j

 . (3)
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Some remarks

• (2) are (3) the same in the sense that there is a one-to-one
correspondence between t and λ.

• Ridge estimate depends on t (or λ) : β̂R = β̂R(t) = β̂R(λ).

• Input variables are generally standardized to make the variables at the
same scale (it is automatic in classical softwares).
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An example

• The problem: explain the level of prostate specific antigen by a
number (8) of clinical measures.

• n = 100 data available at
https://web.stanford.edu/~hastie/ElemStatLearn/

• Package glmnet allows to make ridge regression on R.

162
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UseR

> reg.ridge <- glmnet(prostate.data2[,2:9],prostate.data2[,10],alpha=0)
> plot(reg.ridge,label=TRUE)
> plot(reg.ridge,xvar="lambda",label=TRUE,lwd=2)
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Some properties of ridge estimates

Proposition

1. Solution of (3) is given by

β̂R = β̂R(λ) = (XtX + λI)−1XtY.

2. It follows that
bias (β̂R) = −λ(XtX + λI)−1β

and
V(β̂R) = σ2(XtX + λI)−1XtX(XtX + λI)−1.

Remarks

• For λ = 0, we obtain LS estimates.

• λ↗ =⇒ bias ↗ and variance ↘ and conversely as λ↘.
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Choice of λ

• This choice of λ reveals crucial for the performance: if λ ≈ 0 then
β̂R ≈ β̂MCO , if λ "large" then β̂R ≈ 0.

• The procedure to select λ is usual:

1. Estimation of a criterion for a grid of λ;

2. We choose the value of λ which minimizes the estimated criterion.

• Example: cv.glmnet selects the value of λ which minimizes the
quadratic risk:

E[(Y − X t β̂R(λ))2]

estimated by cross validation.
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> reg.cvridge <- cv.glmnet(prostate.data2[,2:9],prostate.data2[,10],alpha=0)
> bestlam <- reg.cvridge$lambda.min
> bestlam
[1] 0.1060069
> plot(reg.cvridge)
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• Lasso regression shrinks the regression coefficients by constraining the
L1 norm of the parameters.

Definition [Tibshirani, 1996]

1. Lasso estimates β̂L minimize

n∑
i=1

Yi − β0 −
d∑

j=1

Xijβj

2

subject to
d∑

j=1

|βj | ≤ t (4)

2. or equivalently by imposing a penalty on the size of the coefficients

β̂L = argmin
β


n∑

i=1

Yi − β0 −
d∑

j=1

Xijβj

2

+ λ
d∑

j=1

|βj |

 . (5)
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Comparison Ridge-Lasso

• If X is an orthonormal input matrix, we have an explicit solution for
ridge and lasso.

Proposition
If X is orthonormal, then

β̂Rj =
β̂j

1 + λ
and β̂Lj =

sign(β̂j)(|β̂j | − λ) if |β̂j | ≥ λ

0 otherwise.

where β̂j is the LS of βj .

Comments

• Ridge does a proportional shrinkage;

• Lasso translates each coefficient by a factor λ, truncating at 0 (when it
is small).
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LASSO

MCO

RIDGE

Conclusion
Lasso put small coefficients to 0 =⇒ variables with small coefficients are
excluded from the model.
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β1

β2

β̂

β2

β̂

β1

Relationship between ridge and lasso
Both methods find the first point where the elliptical contours hit the
constraint region:

1. L2 for ridge and L1 norm for lasso.

2. The diamonds (L1) has corner =⇒ the constraint region is often hit at
a corner.

171



β1

β2

β̂

β2

β̂

β1

Relationship between ridge and lasso
Both methods find the first point where the elliptical contours hit the
constraint region:

1. L2 for ridge and L1 norm for lasso.

2. The diamonds (L1) has corner =⇒ the constraint region is often hit at
a corner.

171



Some remarks

• As for ridge:

• input variables X1, . . . ,Xd are generally standardized before the
analysis.

• λ↗ =⇒ bias ↗ and variance ↘ and reciprocally as λ↘.

• Choice of λ reveals crucial (minimization of an estimated criterion).

• BUT, unlike ridge: λ↗ =⇒ some estimated parameters equal 0 for
lasso ([Bühlmann and van de Geer, 2011]).
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UseR

> reg.lasso <- glmnet(prostate.data2[,2:9],prostate.data2[,10],alpha=1)
> plot(reg.lasso,label=TRUE)
> plot(reg.lasso,xvar="lambda",label=TRUE,lwd=2)
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Choice of λ

> reg.cvlasso <- cv.glmnet(prostate.data2[,2:9],prostate.data2[,10],alpha=1)
> bestlam <- reg.cvlasso$lambda.min
> bestlam
[1] 0.02815637
> plot(reg.cvlasso)
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Binary classification

• Ridge and lasso have been presented for regression.

• It is not difficult to adjust these methods to the logistic model
Y = {−1, 1}.

• Penalty terms are the same.

• Only change: least square criterion is replaced by likelihood.
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Lasso and Ridge for logistic regression

Definition

Let ỹi = (yi + 1)/2 (ỹi = 0 or 1).

• Ridge estimates for logistic regression are defined by

β̂R = argmin
β

−
n∑

i=1

(ỹix
t
i β − log(1 + exp(x ti β))) + λ

d∑
j=1

β2j

 .

• Lasso estimates for logistic regression are defined by

β̂L = argmin
β

−
n∑

i=1

(ỹix
t
i β − log(1 + exp(x ti β))) + λ

d∑
j=1

|βj |

 .
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UseR

• To make ridge or lasso for logistic regression, we just have to add
family=binomial in glmnet function.

• It is the only change (coefficient paths, choice of λ are the same...).

> colnames(donnees)
[1] "sbp" "tobacco" "ldl" "adiposity" "typea" "obesity"
[7] "alcohol" "age" "chd"
> log.ridge <- glmnet(donnees[,1:8],donnees[,9],family="binomial",alpha=0)
> log.lasso <- glmnet(donnees[,1:8],donnees[,9],family="binomial",alpha=1)
> plot(log.ridge,xvar="lambda")
> plot(log.lasso,xvar="lambda")
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Elastic net

• [Zou and Hastie, 2005] have proposed to combine ridge and lasso with
the following penalty term (called elastic net penalty)

λ

d∑
j=1

((1− α)β2j + α|βj |)

where α ∈ [0, 1].

• α measures the trade-off ridge/lasso :
• α = 1 =⇒ Lasso;
• α = 0 =⇒ Ridge.
• This parameter corresponds (obviously) to the alpha parameter in

glmnet function.

• Advantage: more flexible since elastic net includes ridge and lasso.
• Drawback: we have to select both α and λ (you can use caret to do

that).
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Summary

• LASSO and ridge regressions allow to make efficient linear models
when the classical linear model is defective:

• high correlations between inputs;
• high dimension (large number of inputs).

• When the linear model is efficient, we don’t need to use these
methods.

• Exercise 3-4, IML2.

181



Summary

• LASSO and ridge regressions allow to make efficient linear models
when the classical linear model is defective:

• high correlations between inputs;
• high dimension (large number of inputs).

• When the linear model is efficient, we don’t need to use these
methods.

• Exercise 3-4, IML2.

181



Summary

• LASSO and ridge regressions allow to make efficient linear models
when the classical linear model is defective:

• high correlations between inputs;
• high dimension (large number of inputs).

• When the linear model is efficient, we don’t need to use these
methods.

• Exercise 3-4, IML2.

181



Summary

• LASSO and ridge regressions allow to make efficient linear models
when the classical linear model is defective:

• high correlations between inputs;
• high dimension (large number of inputs).

• When the linear model is efficient, we don’t need to use these
methods.

• Exercise 3-4, IML2.

181



Outline

1. Subset selection

2. Penalized regression

Ridge regression

Lasso regression

Supervised classification

3. Bibliography

182



Références i

Bühlmann, P. and van de Geer, S. (2011).
Statistics for high-dimensional data.
Springer.

Hastie, T., Tibshirani, R., and Friedman, J. (2009).
The Elements of Statistical Learning: Data Mining, Inference,
and Prediction.
Springer, second edition.

Tibshirani, R. (1996).
Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society, Series B, 58:267–288.

183



Références ii

Zou, H. and Hastie, T. (2005).
Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society, Series B, 67:301–320.

184



Part IV

Trees

185



Outline

1. Binary trees

2. Choice of the split

Regression

Supervised classification

3. Pruning a tree

4. Appendix: pruning algorithm

5. Bibliography

186



Presentation

• Tree algorithms are statistical learning algorithms for both regression
and supervised classification.

• Popular method, not (too) difficult to understand, visualization tool.

• Tree algorithms are not generally the most performant algorithms...
but a lot of efficient algorithms are defined from trees (random forest,
gradient tree boosting...).

• There are different ways to build trees.

• We focus on the CART algorithm [Breiman et al., 1984] which is the
most widely used algorithm to define trees.
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Notations

• The problem: explain output Y by p inputs X1, . . . ,Xp.

• Y might be categorical (binary or not) or continuous and X1, . . . ,Xp

categorical or continous.

• For simplicity (to make figures), we first assume that Y is binary (-1
ou 1) and that p = 2 (2 inputs X1 and X2 continuous).
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Data visualization

• n observations (X1,Y1), . . . , (Xn,Yn) where Xi ∈ R2 and Yi ∈ {−1, 1}.

Tree partitions
Find a partition of the feature space into a set of rectangles which divides
points according to their color.
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Binary partitions

• CART algorithm restricts attention to recursive binary partitions.

• 2 examples:
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• At each step, the method splits the data into two regions according to
a split variable and a split point.
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A tree partition

s1

s2

s4

s3

X1 ≥ s1X1 < s1

X2 ≥ s2 X2 < s2

X1 < s3 X1 ≥ s3

X2 < s4 X2 ≥ s4
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A tree partition

s1

s2

s4

s3

X1 ≥ s1X1 < s1

X2 ≥ s2 X2 < s2

X1 < s3 X1 ≥ s3

X2 < s4 X2 ≥ s4

Classification rule
At the end, we do a majority vote in each cell of the partition (in each
rectangle).
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Definitions

Definitions

• Each elements of the partition are called terminal nodes.

• Rp (the first node) is the root node.

• Each split (each question) defines two child nodes, the left and right
child nodes.

Question

• Tree process is recursive: we just have to know how to split a node.

• How to define a good split (or find a good question)?
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Question
How to choose a split?

• At each step, we have to find (j , s) which split a node N into two
children nodes

N1(j , s) = {X ∈ N|Xj ≤ s} and N2(j , s) = {X ∈ N|Xj > s}.

• (j , s) is selected by minimizing a criterion which measures the impurity
of the two children nodes.
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Impurity

• Impurity of a node should be
1. small when the node is homogeneous: values of Y are closed to each

other in the node.
2. large when the node is heterogeneous: values of Y are different from

each other in the node.

The idea

For a given impurity measure I, we choose the split (j , s) which minimizes

P(N1)I(N1(j , s)) + P(N2)I(N2(j , s))

where P(Nk) stands for the proportion of observations in Nk , k = 1, 2
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• In regression (Y continuous), we usually use the variance to measure
the impurity in the node

I(N ) =
1
|N |

∑
i :Xi∈N

(Yi − ȲN )2,

where ȲN is the mean of Yi in N .

Split for regression

At each step, we choose (j , s) which minimizes∑
Xi∈N1(j ,s)

(Yi − Ȳ1)2 +
∑

Xi∈N2(j ,s)

(Yi − Ȳ2)2

where Ȳk = 1
|Nk (j ,s)|

∑
Xi∈Nk (j ,s)

Yi , k = 1, 2.
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Conclusion
We choose the right split.
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• Yi , i = 1, . . . , n take values in {1, . . . ,K}.

• We search an impurity function I such I(N ) is
• small if one label appears in majority in N , if we can clearly

differentiate one label from the other;

• large otherwise.

Definition
Impurity of N is defined by

I(N ) =
K∑
j=1

f (pj(N ))

where

• pj(N ) stands for the proportion of class j in N .

• f is a concave function [0, 1]→ R+ such that f (0) = f (1) = 0.

202



• Yi , i = 1, . . . , n take values in {1, . . . ,K}.

• We search an impurity function I such I(N ) is
• small if one label appears in majority in N , if we can clearly

differentiate one label from the other;

• large otherwise.

Definition
Impurity of N is defined by

I(N ) =
K∑
j=1

f (pj(N ))

where

• pj(N ) stands for the proportion of class j in N .

• f is a concave function [0, 1]→ R+ such that f (0) = f (1) = 0.

202



• Yi , i = 1, . . . , n take values in {1, . . . ,K}.

• We search an impurity function I such I(N ) is
• small if one label appears in majority in N , if we can clearly

differentiate one label from the other;

• large otherwise.

Definition
Impurity of N is defined by

I(N ) =
K∑
j=1

f (pj(N ))

where

• pj(N ) stands for the proportion of class j in N .

• f is a concave function [0, 1]→ R+ such that f (0) = f (1) = 0.

202



Examples of functions f

• If N is pur, we expect that I(N ) = 0

=⇒ that’s why
f (0) = f (1) = 0.

• The two classical impurity functions are
1. Gini: f (p) = p(1− p) ;
2. Information: f (p) = −p log(p).

Binary case
We have

1. I(N ) = 2p(1− p) for Gini

2. I(N ) = −p log p − (1− p) log(1− p) for Information

where p stands for the proportion of 1 (or -1) in N .
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Split for supervised classification

• Recall that for a given node N and (j , s), the two child nodes are
defined by

N1(j , s) = {X ∈ N|Xj ≤ s} and N2(j , s) = {X ∈ N|Xj > s}.

Choice of (j , s)

For a given impurity measure I, we choose (j , s) wich minimizes:

P(N1)I(N1(j , s)) + P(N2)I(N2(j , s)).
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Example

I(N ) = 0.4872
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Conclusion
We select the left split. (Exercise 1,2,3-IML3.) 206
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Questions

• How to select an efficient tree?

• Do we choose the maximum or deeper tree? (split the nodes until one
observation by node).

• Grow a large tree and then prune this tree (select a subtree of this
large tree)?
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An example for binary classification
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Optimal tree?
Intuitively, we are tempted to choose 5 or 6 terminal nodes.
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"Deeper" tree

> library(rpart)
> library(rpart.plot)
> tree1 <- rpart(Y~.,data=my_data,cp=0.0001,minsplit=2)
> prp(tree1)
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A smaller tree

> tree2 <- rpart(Y~.,data=my_data)
> prp(tree2)

X2 >= 0.8

X1 >= 0.2 X1 >= 0.6

X2 < 0.40 1

0 1

1

yes no
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Comparison

• We estimate the misclassification error of these two trees on a test set.

> prev1 <- predict(tree1,newdata=dtest,type="class")
> prev2 <- predict(tree2,newdata=dtest,type="class")
> round(mean(prev1!=dtest$Y),3)
[1] 0.157
> round(mean(prev2!=dtest$Y),3)
[1] 0.115

Conclusion

• Performance is not always improved by the size of the tree.

• Tree size is a tuning parameter which governs the model’s complexity.
We have to select this parameter.
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Overfitting

Test error

OVERFITTING

Train error

Complexity (λ)

Remark
Complexity is governed by the depth (or size) of the tree. 213



Bias and variance
Depth controls the tradeoff bias/variance :

1. Small tree =⇒ steady (robust) tree =⇒ small variance... but... large
bias.

2. Large tree =⇒ unsteady tree =⇒ small bias... but... large variance
(overfitting).

Pruning [Breiman et al., 1984]
Instead of stopping the splitting process, we

1. grow a large tree (very deep tree) Tmax ;

2. then select a sequence of nested subtrees (see Appendix 4.4):

Tmax = T0 ⊃ T1 ⊃ . . . ⊃ TK .

3. finally select one subtree in this sequence.
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Nested trees
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1

1

1

0

0

0 1

1

1 0 1

1

yes no

215



Nested trees

X1 >= 0.57

X2 < 0.37

X2 >= 0.77

X2 < 0.4

X1 >= 0.68 X1 >= 0.99

X2 >= 0.8

X1 >= 0.22 X2 < 0.0170

0

0 1 0 1

0 1 0 1

yes no

215



Nested trees

X1 >= 0.57

X2 < 0.37

X2 >= 0.77

X2 < 0.4

X1 >= 0.68

X2 >= 0.8

X1 >= 0.220

0

0 1

1

0 1

1

yes no

215



Nested trees

X1 >= 0.57

X2 < 0.37

X2 >= 0.770

0 1

1

yes no

215



Nested trees

1

215



Example

> printcp(tree)
Classification tree:
rpart(formula = Y ~ ., data = my_data, cp = 1e-04, minsplit = 2)
Variables actually used in tree construction:
[1] X1 X2
Root node error: 204/500 = 0.408
n= 500

CP nsplit rel error xerror xstd
1 0.2941176 0 1.000000 1.00000 0.053870
2 0.1225490 1 0.705882 0.71569 0.049838
3 0.0931373 3 0.460784 0.49020 0.043844
4 0.0637255 4 0.367647 0.43627 0.041928
5 0.0122549 5 0.303922 0.34314 0.038034
6 0.0098039 7 0.279412 0.34314 0.038034
7 0.0049020 9 0.259804 0.36275 0.038923
8 0.0040107 25 0.181373 0.34804 0.038260
9 0.0036765 41 0.112745 0.39216 0.040184
10 0.0032680 49 0.083333 0.40196 0.040586
11 0.0024510 52 0.073529 0.41176 0.040980
12 0.0001000 82 0.000000 0.43137 0.041742
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> arbre1 <- prune(tree,cp=0.005)
> prp(tree)
> prp(tree1)

X1 >= 0.57

X2 < 0.37

X1 < 1

X1 >= 0.75

X1 < 0.74

X1 >= 0.6

X2 < 0.3

X1 >= 0.66

X1 < 0.66

X2 >= 0.32

X1 < 0.59

X2 >= 0.77

X1 < 0.98

X2 < 0.9

X2 >= 0.9

X1 >= 0.66

X1 < 0.64

X2 < 0.4

X1 >= 0.68

X1 >= 0.99

X2 >= 0.62

X1 >= 0.66

X1 < 0.8

X2 >= 0.74

X2 < 0.71

X1 >= 0.95

X1 < 0.96

X1 < 0.59

X1 >= 0.58

X2 < 0.42

X2 >= 0.42

X2 >= 0.8

X1 >= 0.22

X2 < 0.91

X2 >= 0.92

X2 >= 0.95

X2 < 0.95

X1 >= 0.3

X1 < 0.35

X1 < 0.095

X2 >= 0.85

X2 < 0.94

X1 >= 0.079

X2 < 0.017

X1 >= 0.26

X2 < 0.27

X1 < 0.18

X1 >= 0.015

X2 >= 0.027

X2 < 0.07

X1 >= 0.16

X2 >= 0.19

X2 < 0.22

X2 >= 0.26

X2 < 0.1

X1 < 0.13

X2 >= 0.074

X2 >= 0.18

X2 < 0.19

X1 >= 0.54

X2 >= 0.23

X2 < 0.23

X1 >= 0.41

X1 < 0.45

X2 >= 0.61

X2 < 0.62

X1 >= 0.54

X1 < 0.56

X1 < 0.3

X1 >= 0.28

X1 >= 0.19

X1 < 0.22

X2 >= 0.78

X2 < 0.79

X1 < 0.2

X1 >= 0.2

X2 < 0.43

X2 >= 0.41

X2 >= 0.37

X1 < 0.15

X1 >= 0.55

X1 < 0.55

0

0

0

1

0

1

0

1

1

1

0

0

0

1

1

1

0

1

0

0

0

1

0

1

1

1

0

1

0

1

1

0

0

0

1

0

1

1

0

0

1

1

1

0

1

0

0

0

0

1

0

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

0

0

1

1

0

1

1

0

0

0

1

1

1

0

1

1

yes no

X1 >= 0.57

X2 < 0.37

X2 >= 0.77

X2 < 0.4

X1 >= 0.68 X1 >= 0.99

X2 >= 0.8

X1 >= 0.22 X2 < 0.0170

0

0 1 0 1

0 1 0 1

yes no

Remark
We have to select one tree in the sequence

Tmax = T0 ⊃ T1 ⊃ . . . ⊃ TM . 217



The final tree

Risk estimation

We choose the final tree by minimizing a risk R(Tm) = E[`(Y ,Tm(X )]

(as usual). For instance,

1. quadratic risk E[(Y − Tm(X ))2] in regression ;

2. misclassification error P(Y 6= Tm(X )) in supervised classification.

This risk is unknown and is generally estimated by cross validation.

Select the optimal tree
The approach consists in

1. estimating the risk for each subtree.

2. selecting the subtree which minimizes the estimated risk.
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• Estimations of R(m) are in the column xerror of the function printcp:

CP nsplit rel error xerror xstd
1 0.2941176 0 1.000000 1.00000 0.053870
2 0.1225490 1 0.705882 0.71569 0.049838
3 0.0931373 3 0.460784 0.49020 0.043844
4 0.0637255 4 0.367647 0.43627 0.041928
5 0.0122549 5 0.303922 0.34314 0.038034
6 0.0098039 7 0.279412 0.34314 0.038034
7 0.0049020 9 0.259804 0.36275 0.038923

• We can look at the estimated error for each subtree with plotcp

> plotcp(tree3)

●

●

●

●

● ●
●

●

● ● ●
●

cp

X−v
al R

elat
ive 

Erro
r

0.2
0.4

0.6
0.8

1.0

Inf 0.19 0.11 0.028 0.0069 0.0038 0.0028

1 2 4 5 6 8 10 26 42 50 53 83

size of tree

Conclusion
We choose the tree with 5 splits.
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Visualisation of the final tree

> alpha_opt <- arbre$cptable[which.min(tree$cptable[,"xerror"]),"CP"]
> tree_final <- prune(tree,cp=alpha_opt)
> prp(tree_final)

X1 >= 0.57

X2 < 0.37

X2 >= 0.77

X2 >= 0.8

X1 >= 0.220

0 1 0 1

1

yes no
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Classification rule and score for a tree

• Final tree T consists of a partition of Rp into |T | terminal nodes
N1, . . . ,N|T |.

• Classification rule:

ĝ(x) =

{
1 if

∑
i :Xi∈N (x) 1Yi=1 ≥

∑
i :Xi∈N (x) 1Yi=0

0 otherwise,

where N (x) stands for the terminal node which contains x .

• Score:
Ŝ(x) = P̂(Y = 1|X = x) =

1
n

∑
i :Xi∈N (x)

1Yi=1.
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Predict function

• predict function (or predict.rpart) allows to estimate the label or the
score of a new observation:

> x_new <- data.frame(X1=0.5,X2=0.85)
> predict(arbre_final,newdata=x_new)

0 1
1 0.9 0.1
> predict(arbre_final,newdata=x_new,type="class")
1
0
Levels: 0 1
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Conclusion

• "Simple" method for both regression and supervised classification.

• We can interpret the model (plot the tree) if the tree is not too large.

• One drawback: due to the recursive process, the algorithm is not
robust, affected by small disturbances in the sample.

• This drawback will become an advantage for bootstrap aggregating
=⇒ random forest.

• Exercise 4-IML3.
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Construction of the sequence

• Let T be a tree with |T | terminal nodes N1, . . . ,N|T |.
• Define R(N ) the risk (error) in node N :

• Regression:

R(N ) =
1
|N |

∑
i :Xi∈N

(Yi − ȲN )2.

• Classification:
R(N ) =

1
|N |

∑
i :Xi∈N

1Yi 6=YN .

Definition
For α > 0,

Cα(T ) =

|T |∑
m=1

NmR(Nm) + α|T |

is the cost complexity criterion of T .
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The idea

• Cα(T ) measures both the fitting and the complexity of the tree.

• The idea is to find the subtree Tα which minimizes Cα(T ) for a safe
choice of α.

Remark

• α = 0 =⇒ Tα = T0 = Tmax .

• α = +∞ =⇒ Tα = T+∞ =tree without split.

• α is called the complexity parameter.
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Theorem [Breiman et al., 1984]

The exists a finite sequence α0 = 0 < α1 < . . . < αM with M < |Tmax |
and a sequence of nested trees

Tmax = T0 ⊃ T1 ⊃ . . . ⊃ TM

such thah ∀α ∈ [αm, αm+1[

Tm = argmin
T

Cα(T ).

α1 ..........α0 = 0

T0 T1 TM

α2 αM

Important consequence

• We now are faced with a finite sequence of nested trees.

• We have to choose one tree in this sequence (or one value of α).
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Part V

Bagging and random forests
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• Bagging is a set of algorithms introduced by Léo Breiman
[Breiman, 1996].

• Bagging comes from Bootstrap Aggregating.

The idea

• Instead of fitting one "sophisticated" machine, fit a lot of simple
machines and aggregate them.

• Example:

m̂(x) =
1
B

B∑
k=1

m̂k(x)

where m̂1(x), . . . , m̂B(x) are simple machines.
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Questions

• How to define the simple machines?

• Do we choose efficient simple machines? Not efficient (large bias, large
variance) machines?

• How many machines?
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• One constraint: we want to fit simple machines in a similar way (only
trees for instance).

• Problem: if you run the same algorithm on the same dataset
(X1,Y1), . . . , (Xn,Yn), all simple machines will be the same and

m̂(x) =
1
B

B∑
k=1

m̂k(x) = m̂1(x)

=⇒ aggregation is useless.

• Solution: run the same algorithm on different datasets.
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Bootstrap sample

• We have at hand one dataset Dn = (X1,Y1), . . . , (Xn,Yn).

• We will not create or invent data!

Bootstrap

• Define new datasets by randomly draw dataset with replacement from
the training data.
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Bootstrap: example

• The sample:
1 2 3 4 5 6 7 8 9 10

• Bootstrap samples:
3 4 6 10 3 9 10 7 7 1 m1

2 8 6 2 10 10 2 9 5 6 m2

2 9 4 4 7 7 2 3 6 7 m3

6 1 3 3 9 3 8 10 10 1 m4

3 7 10 3 2 8 6 9 10 2 m5
...

...
7 10 3 4 9 10 10 8 6 1 mB

• We finally aggregate:

m̂B(x) =
1
B

B∑
k=1

mk(x).
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Bagging algorithm

• Estimates mk are not fitted on the original dataset
Dn = (X1,Y1), . . . , (Xn,Yn) but on bootstrap samples.

Bagging
Inputs:

• a "simple machine" (a tree, 1NN rule...)

• B a positive integer.

For k = 1, . . . ,B :

1. Draw a bootstrap sample from Dn.

2. Fit the simple machine on this bootstrap sample: mk(x).

Output: the aggregate estimate m̂B(x) = 1
B

∑B
k=1mk(x).
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How to choose B?

• 2 parameters have to be chosen: the number of iterations B and the
simple machine.

• From the Law of Large Numbers, we can prove that

lim
B→+∞

m̂B(x) = lim
B→+∞

1
B

B∑
k=1

mk(x) = m̄(x ,Dn) a.s|Dn.

• As B increases, m̂B stabilizes.

Important conclusion

• B is not an important parameter, we have to choose it as large as
possible (often 500).

• Bagging is random but it is less random when B is large.
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possible (often 500).

• Bagging is random but it is less random when B is large.

239



How to choose B?

• 2 parameters have to be chosen: the number of iterations B and the
simple machine.

• From the Law of Large Numbers, we can prove that

lim
B→+∞

m̂B(x) = lim
B→+∞

1
B

B∑
k=1

mk(x) = m̄(x ,Dn) a.s|Dn.

• As B increases, m̂B stabilizes.

Important conclusion

• B is not an important parameter, we have to choose it as large as
possible (often 500).

• Bagging is random but it is less random when B is large.

239



Some properties

Bias and variance

For regression, we have E[m̂B(x)] = E[mk(x)], ∀k = 1, . . . ,B and

V[m̂B(x)] ≈ |ρ(x)|V[mk(x)]

where ρ(x) = corr(mk(x),mk ′(x)) for k 6= k ′.

Remarks

• Bias is not affected by the bagging process.

• Variance of the bagging estimate reduces when correlation between the
simple machines decreases.

• Consequence: we need simple machines sensitive to small disturbances
of the data.

• Trees are known to satisfy this property (drawback becomes an
advantage...).
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Tree (reminder)

s1

s2

s4

s3

X1 ≥ s1X1 < s1

X2 ≥ s2 X2 < s2

X1 < s3 X1 ≥ s3

X2 < s4 X2 ≥ s4

Important parameter: depth

• small: bias ↗, variance ↘
• large: bias ↘, variance ↗
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• A random forest = a collection of trees.

• These algorithms have been studied by Léo Breiman (2000).

• References

http://www.stat.berkeley.edu/~breiman/RandomForests/

Robin Genuer’s phd thesis [Genuer, 2010].

• Trees are fitted as for the CART process (no pruning) with only one
small variation.
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s1

s2

s4

s3

X1 ≥ s1X1 < s1

X2 ≥ s2 X2 < s2

X1 < s3 X1 ≥ s3

X2 < s4 X2 ≥ s4

Trees for the forest

• At each step, the best split is selected among mtry ≤ d inputs
randomly chosen among the d inputs.

• Goal: try to reduce correlations between the trees, to make the trees
more different from each other.
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Random forest algorithm
Inputs:

• B size of the forest;

• mtry ∈ {1, . . . , d} number of candidate inputs for each split.

For k = 1, . . . ,B :

1. Draw a bootstrap sample from Dn;

2. Fit a tree according to the CART process, each split is chosen among
mtry variables randomly chosen among the d input variables. Denote
by Tk(x) the tree.

Output: the random forest T̂B(x) = 1
B

∑B
k=1 Tk(x).
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Comments

• The algorithm is for both regression and binary classfication:
1. for regression, the RF estimates m?(x) = E[Y |X = x ];
2. for binary classification, the RF estimates S?(x) = P(Y = 1|X = x).

• Simple algorithm. On R, you can use randomForest function from the
randomForest package or the ranger function from the ranger package.

• Estimate known to be efficient for complex data and robust (wrt to the
choice of its parameter).
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Choice of the parameter

• B : large.

Remind
Bagging decreases the variance:

V[T̂B(x)] ≈ |ρ(x)|V[Tk(x)].

Consequence

• Bias is not improved by the bagging process, it is recommended to use
trees with small bias and large variance.

• Trees for forest are deep trees with a small number of observations in
each terminal node.

• By default randomForest fit trees with (only) 5 observations in
terminal nodes for regression and 1 for supervised classification.
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Choice of mtry

• This parameter (slightly) governs the bias/variance trade-off of the
forest.

Conclusion

• We can look at the performances of the forest for many values of mtry.

• By default mtry = d/3 for regression and
√
d for supervised

classification.
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Application on the spam dataset

> library(randomForest)
> forest1 <- randomForest(type~.,data=spam)
> forest1

Call:
randomForest(formula = type ~ ., data = spam)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 7

OOB estimate of error rate: 5.26%
Confusion matrix:

0 1 class.error
0 1352 42 0.03012912
1 79 827 0.08719647
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Random forest performance

• As for other machine learning algorithms, we need criteria to measure
performances of a random forest.

• Examples:

• Quadratic risk E[(Y − T̂B(X ))2] for regression;
• Misclassification error P(Y 6= T̂B(X )) for supervised classification.

• These criteria can be estimated by validation hold out or cross
validation.

• Bootstrap step in bagging algorithms proposes another way to estimate
these criteria: OOB (Out Of Bag).
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Ouf Of Bag error

• For each (Xi ,Yi ), construct its random forest predictor by averaging
only those trees corresponding to bootstrap samples in which (Xi ,Yi )

does not appear:

Ŷi =
1
|IB |

∑
k∈IB

Tk(Xi )

where IB is the set of trees such that (Xi ,Yi ) is Out Of Bag.

Out Of Bag estimates

• OOB quadratic risk: 1
n

∑n
i=1(Ŷi − Yi )

2.

• OOB misclassification error: 1
n

∑n
i=1 1Ŷi 6=Yi

.
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Example

3 4 6 10 3 9 10 7 7 1 m1

2 8 6 2 10 10 2 9 5 6 m2

2 9 4 4 7 7 2 3 6 7 m3

6 1 3 3 9 3 8 10 10 1 m4

3 7 10 3 2 8 6 9 10 2 m5

7 10 3 4 9 10 10 8 6 1 m6

• (X1,Y1) does not appear in bootstrap samples 2, 3 and 5, thus

Ŷ1 =
1
3

(m2(X1) + m3(X1) + m5(X1)).

• We do the same for all the observations =⇒ Ŷ2, . . . , Ŷn.
• We obtain the OOB quadratic risk:

1
n

n∑
i=1

(Ŷi − Yi )
2.
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(Ŷi − Yi )
2.

254



Example

• Spam dataset with mtry = 1 :

> forest2 <- randomForest(Y~.,data=spam,mtry=1)
> forest2

Call:
randomForest(formula = Y ~ ., data = dapp, mtry = 1)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 1

OOB estimate of error rate: 8.04%
Confusion matrix:

0 1 class.error
0 1367 27 0.01936872
1 158 748 0.17439294

Conclusion
OOB misclassification error: 8.04% for mtry = 1 and 5.26% for mtry = 7.
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• Single trees are highly interpretable.

• Linear combinations of trees (random forests) loose this important
features.

• There exists a score which measures importance of each inputs.

• As for OOB error, this score is based on the fact for some observations
does not appear in bootstrap samples.
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• Let OOBk denotes the OOB sample of the k-th tree.

• Let EOOBk
the quadratic error of the k-th tree measured on OOBk :

EOOBk
=

1
|OOBk |

∑
i∈OOBk

(Tk(Xi )− Yi )
2.

• Permute (randomly) the values of input j in OOBk =⇒ OOB j
k and

compute the quadratic error on this dataset:

E j
OOBk

=
1

|OOB j
k |

∑
i∈OOB j

k

(Tk(X j
i )− Yi )

2,

Definition
The variable importance score for the j variable is defined by

Imp(Xj) =
1
B

B∑
k=1

(E j
OOBk

− EOOBk
).
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Example

• It is easy to obtain variable importance score with randomForest

> imp <- importance(forest1)
> imp1 <- sort(imp,decreasing=TRUE)
> ord <- order(imp,decreasing=TRUE)
> ord
[1] 52 53 55 7 56 16 21 25 57 5 24 19 26 23 46 27 11 8 50 12 37 3 18 6 45

[26] 17 10 2 28 42 49 35 1 36 39 13 54 9 30 33 22 51 29 14 43 44 31 20 48 15
[51] 40 4 41 34 32 38 47
> barplot(imp1,beside=TRUE)
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Comparison - spam dataset

• We make a comparison between some statistical learning algorithms on
the spam dataset.

• To do that, we split the data into a

• a training set of size 2300 to fit and calibrate the models;

• a test set of size 2301 to estimate misclassification error of each model

Ln(ĝ) =
1

ntest

∑
i∈Dtest

1ĝ(Xi ) 6=Yi
.
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Test - Instructions

• Document allowed: 1 sheet A4 format (single sided). No calculators,
no laptops, no tablets, no mobile phone...

• Questions using the sign ♣ may have one or several correct answers.
Other questions have a single correct answer.

• Only the last sheet (answer sheet page 9) is to be returned. You can
keep all the other pages.

• Squares corresponding to good answers have to be colored with a
black pen. Cross or circle marks are not sufficient! It is not possible to
correct (once a square has been colored).
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Scoring process

• No answer to one question =⇒ 0 point for the question.

• Questions with a single correct answer: positive score for a good
answer, negative score for a bad answer.

• Questions with several correct answers (sign ♣): positive score for
each good answer, negative or null score for each bad answer.
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Mistake in exercise 1

• Many question in the exercices, they are not in the same order.
• Be careful: Exercise 1 should start with: We consider the following

tibbles:

df1
# A tibble ...

df2
# A tibble ...

• But in some subjects, these tibbles could be presented:
• Between Question 1 and Question 2
• Between Question 2 and Question 3
• After Question 3

Solution
You have to find the tibbles df1 and df2 before answering to Question 1,
Question 2 and Question 3.
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Project (machine learning part)

• Find a dataset for a supervised learning problem (explain one variable
by other variables). This dataset should contain at least 800
individuals and 30 variables (continuous or categorical).

• Descriptive part: present data (individuals and variables) and use
efficient R tools (dplyr, ggplot...) for data manipulation and
visualization.
=⇒ not a list of graph or summaries! You have to comment each
graph and statistical summaries.
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Machine learning part

• Identify the practical problem;

• Translate the practical problem into a mathematical problem (Y , X ,
loss function, risk...).

• Propose and explain many machine learning algorithms (k-nn,
linear/logistic, ridge, lasso, tree, random forest...)

• Define a way to compare these algorithms (validation hold out, cross
validation...).

• Be careful: you have also to select parameters for each algorithms...
You can look at exercise 6 of the third tutorial.

• Conclusion: choice of the best method and analysis of its
performances.
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• Deadline: December, 15th (11:59 pm).

• Each group should provide a notebook (.rmd file) and put on
blackboard (you will receive instructions):
• the dataset (.txt, .csv)
• the rmd file and the html output file (with figures, R commands, R

output...)

• Be careful (again): I will test your codes by running all the chunks of
the notebook (the notebook should be complete!), in case of problem
with some chunks, you will be penalized.
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Conclusion

• More than an Introduction to machine learning.

• Propose a solid mathematical framework to make machine learning.

• You now have the tools to understand more complex algorithms: SVM,
gradient boosting...

• ... just an introduction (15hours...): other lectures on these topics.

• Try to avoid the june exam session!

THANK YOU

270



Conclusion

• More than an Introduction to machine learning.

• Propose a solid mathematical framework to make machine learning.

• You now have the tools to understand more complex algorithms: SVM,
gradient boosting...

• ... just an introduction (15hours...): other lectures on these topics.

• Try to avoid the june exam session!

THANK YOU

270



Conclusion

• More than an Introduction to machine learning.

• Propose a solid mathematical framework to make machine learning.

• You now have the tools to understand more complex algorithms: SVM,
gradient boosting...

• ... just an introduction (15hours...): other lectures on these topics.

• Try to avoid the june exam session!

THANK YOU

270



Conclusion

• More than an Introduction to machine learning.

• Propose a solid mathematical framework to make machine learning.

• You now have the tools to understand more complex algorithms: SVM,
gradient boosting...

• ... just an introduction (15hours...): other lectures on these topics.

• Try to avoid the june exam session!

THANK YOU

270



Conclusion

• More than an Introduction to machine learning.

• Propose a solid mathematical framework to make machine learning.

• You now have the tools to understand more complex algorithms: SVM,
gradient boosting...

• ... just an introduction (15hours...): other lectures on these topics.

• Try to avoid the june exam session!

THANK YOU

270


	Mathematical setting for SL
	Motivations
	Mathematical framework for statistical learning
	Some criterion for regression and supervised classification
	Regression
	Binary classification
	Scoring

	Estimating the risk
	Overfitting
	Bibliography

	Parametric versus nonparametric approaches
	Some parametric methods
	Linear and logistic models
	Linear discriminant analysis

	Some nonparametric methods
	Kernel and nearest neighbors methods
	The curse of dimensionality

	Empirical risk minimization
	Setting
	Caret package

	Bibliography

	Linear model: variable selection and et regularization
	Subset selection
	Penalized regression
	Ridge regression
	Lasso regression
	Supervised classification

	Bibliography

	Trees
	Binary trees
	Choice of the split
	Regression
	Supervised classification

	Pruning a tree
	Appendix: pruning algorithm
	Bibliography

	Bagging and random forests
	Bagging
	Random forests
	The algorithm
	OOB error
	Variable importance

	Bibliography


