Introduction to statistical learning

L. Rouvière
laurent.rouviere@univ-rennes2.fr
October 2019

Outline

- 15 hours for this introduction.
- Materials: slides + exercises with R available here https://Irouviere.github.io/intro-machine-learning/
- 4 parts:

1. Setting for statistical learning
2. Parametric vs non parametric approaches
3. Penalized regressions
4. Trees and random forests

- Prerequisites: basics in probability, statistics (law of large numbers, estimation, bias, variance...) and data mining (linear model, logistic model, linear discriminant analysis...).

Part I

Mathematical setting for SL

Outline

1. Motivations
2. Mathematical framework for statistical learning
3. Some criterion for regression and supervised classification

Regression
Binary classification
Scoring
4. Estimating the risk
5. Overfitting
6. Bibliography

Outline

1. Motivations
2. Mathematical framework for statistical learning
3. Some criterion for regression and supervised classification

Regression
Binary classification
Scoring
4. Estimating the risk
5. Overfitting
6. Bibliography

Statistical learning?

Many "definitions"

1. "... explores way of estimating functional dependency from a given collection of data" [Vapnik, 2000].
2. "...vast set of tools for modelling and understanding complex data" [James et al., 2015].

Statistical learning?

Many "definitions"

1. "... explores way of estimating functional dependency from a given collection of data" [Vapnik, 2000].
2. "...vast set of tools for modelling and understanding complex data" [James et al., 2015].
3. Learn a behavior from examples, let the data describes mechanisms of a problem.

Statistical learning?

Many "definitions"

1. "... explores way of estimating functional dependency from a given collection of data" [Vapnik, 2000].
2. "...vast set of tools for modelling and understanding complex data" [James et al., 2015].
3. Learn a behavior from examples, let the data describes mechanisms of a problem.

Statement

- Due to the digital revolution, we are faced with more and more complex data.
- Usual algorithms are not always efficient for these kind of data.

Statistical learning?

Many "definitions"

1. "... explores way of estimating functional dependency from a given collection of data" [Vapnik, 2000].
2. "...vast set of tools for modelling and understanding complex data" [James et al., 2015].
3. Learn a behavior from examples, let the data describes mechanisms of a problem.

Statement

- Due to the digital revolution, we are faced with more and more complex data.
- Usual algorithms are not always efficient for these kind of data.
- It is necessary to provide efficient algorithms which (automatically) learn from data.

History - see [Besse and Laurent,]

Period	Memory	Order of magnitude
$1940-70$	Byte	$n=30, p \leq 10$
1970	MB	$n=500, p \leq 10$
1980	MB	Machine Learning (computer science)
1990	GB	Data-Mining
2000	TB	$p>n$, statistical learning
2010	PB	n and p large, cloud, cluster...
2013	$? ?$	Big data
2017	$? ?$	Artificial Intelligence

History - see [Besse and Laurent,]

Period	Memory	Order of magnitude
$1940-70$	Byte	$n=30, p \leq 10$
1970	MB	$n=500, p \leq 10$
1980	MB	Machine Learning (computer science)
1990	GB	Data-Mining
2000	TB	$p>n$, statistical learning
2010	PB	n and p large, cloud, cluster...
2013	$? ?$	Big data
2017	$? ?$	Artificial Intelligence

Computer resources

- Data Mining (patterns in large datasets, outliers...).
- Statistical learning (algorithms that can automatically learn from the data) \Longrightarrow data decides, not the user!

Statistical learning

- Find algorithms that can automatically learn from the data.
- It is not the user who choose both an algorithm and/or the parameters, it is the data which decides.
- But...

Statistical learning

- Find algorithms that can automatically learn from the data.
- It is not the user who choose both an algorithm and/or the parameters, it is the data which decides.
- But...the user should tell to the computer how to do that.

Conclusion

It is necessary to master the basics of machine learning algorithms.

Handwritten recognition

Statistical learning

Understand and learn a behavior from examples.

0	0	0	0	0
1	1	1	1	1
2	2	2	2	2
3	3	3	3	3
4	4	4	4	4
5	5	5	5	5
6	6	6	6	6
7	7	7	7	7
8	8	8	8	8
9	9	9	9	9

Handwritten recognition

Statistical learning

Understand and learn a behavior from examples.

0	0	0	0	0
1	1	1	1	1
2	2	2	2	2
3	3	3	3	3
4	4	4	4	4
5	5	5	5	5
6	6	6	6	6
7	7	7	7	7
8	8	8	8	8
9	9	1	9	9

What is the number? $0,1,2 \ldots$?

Speech recognition

Ozone prediction

- During one year, we have measured ozone concentration in a city (V4) ;
- Other meteorological variables are available (temperature, nebulosity, wind...).

> head(Ozone)												
		V2	V3	V4	V5	V6 V7	V8	V9	V10	V11	V12	V13
1	1	1	4	3	5480	820	NA	NA	5000	-15	30.56	200
2	1	2	5	3	5660	6 NA	38	NA	NA	-14	NA	300
3	1	3	6	3	5710	428	40	NA	2693	-25	47.66	250
4	1	4	7	5	5700	337	45	NA	590	-24	55.04	100
	1	5	1		5760	351			450		. 02	

Ozone prediction

- During one year, we have measured ozone concentration in a city (V4) ;
- Other meteorological variables are available (temperature, nebulosity, wind...).

> head(Ozone)													
	V1	V2	V3	V4	V5	V6	V7	V8	v9	V10	V11	V12	V13
1	1	1	4	3	5480	8	20	NA	NA	5000	-15	30.56	200
2	1	2	5	3	5660	6	NA	38	NA	NA	-14	NA	300
3	1	3	6	3	5710	4	28	40	NA	2693	-25	47.66	250
4	1	4	7	5	5700	3	37	45	NA	590	-24	55.04	100
	1	5	1	5	5760	3	51	54		450	25	57.02	

Question

Can we explain and predict ozone concentration for tomorrow given meteorological predictions?

Spam detection

- For 4601 emails, we have identified 1813 spams.
- In addition to this class label there are 57 variables indicating the frequency of some words and characters in the e-mail.

$>$	spam[1:5,c(1:8,58)]								
	make address	all num3d		our over remove	internet type				
1	0.00	0.64	0.64	0	0.32	0.00	0.00	0.00	spam
2	0.21	0.28	0.50	0	0.14	0.28	0.21	0.07	spam
3	0.06	0.00	0.71	0	1.23	0.19	0.19	0.12	spam
4	0.00	0.00	0.00	0	0.63	0.00	0.31	0.63 spam	
5	0.00	0.00	0.00	0	0.63	0.00	0.31	0.63 spam	

Spam detection

- For 4601 emails, we have identified 1813 spams.
- In addition to this class label there are 57 variables indicating the frequency of some words and characters in the e-mail.

$>$	spam[1:5,c(1:8,58)]								
	make address	all num3d		our over	remove	internet type			
1	0.00	0.64	0.64	0	0.32	0.00	0.00	0.00	spam
2	0.21	0.28	0.50	0	0.14	0.28	0.21	0.07	spam
3	0.06	0.00	0.71	0	1.23	0.19	0.19	0.12	spam
4	0.00	0.00	0.00	0	0.63	0.00	0.31	0.63 spam	
5	0.00	0.00	0.00	0	0.63	0.00	0.31	0.63 spam	

Question

From these informations, can we automatically detect if a new e-mail is (or not) a spam?

Supervised vs unsupervised learning

- Supervised learning: explain/predict an output $y \in \mathcal{Y}$ from inputs $x \in \mathcal{X}$:

Supervised vs unsupervised learning

- Supervised learning: explain/predict an output $y \in \mathcal{Y}$ from inputs $x \in \mathcal{X}$:
- Linear and logistic models;
- Linear discriminant analysis;
- Tree and random forests...

Supervised vs unsupervised learning

- Supervised learning: explain/predict an output $y \in \mathcal{Y}$ from inputs $x \in \mathcal{X}$:
- Linear and logistic models;
- Linear discriminant analysis;
- Tree and random forests...
- Unsupervised learning: describe hidden structure from "unlabeled" data (make groups):

Supervised vs unsupervised learning

- Supervised learning: explain/predict an output $y \in \mathcal{Y}$ from inputs $x \in \mathcal{X}$:
- Linear and logistic models;
- Linear discriminant analysis;
- Tree and random forests...
- Unsupervised learning: describe hidden structure from "unlabeled" data (make groups):
- Hierarchical classifications;
- k-means algorithms;
- Mixture models...

Supervised vs unsupervised learning

- Supervised learning: explain/predict an output $y \in \mathcal{Y}$ from inputs $x \in \mathcal{X}$:
- Linear and logistic models;
- Linear discriminant analysis;
- Tree and random forests...
- Unsupervised learning: describe hidden structure from "unlabeled" data (make groups):
- Hierarchical classifications;
- k-means algorithms;
- Mixture models...

Wide range of applications

finance, economy, marketing, biology, medecine...

Theory for statistical learning

References

- Reference book: [Vapnik, 2000]

Statistics for Engineering and Information Science

Vladimir N. Vapnik

```
The Nature
of Statistical
Learning Theo y
Sccond Edition
Springer
```


The Elements of Statistical Learning [Hastie et al., 2009,

James et al., 2015]

- Available (with datasets, R commands...) at:

$$
\begin{gathered}
\text { https://web.stanford.edu/~hastie/ElemStatLearn/ } \\
\text { http://www-bcf.usc.edu/~gareth/ISL/ }
\end{gathered}
$$

- This course is largely based on these two books.

Outline

1. Motivations

2. Mathematical framework for statistical learning
3. Some criterion for regression and supervised classification

Regression

Binary classification
Scoring
4. Estimating the risk
5. Overfitting
6. Bibliography

Regression vs supervised classification

- Input/output data: $d_{n}=\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ where $x_{i} \in \mathcal{X}$ are the inputs $y_{i} \in \mathcal{Y}$ the outputs.

Goal

1. Explain connections between inputs x_{i} and outputs y_{i};
2. Predict the output y for a new input $x \in \mathcal{X}$.

Regression vs supervised classification

- Input/output data: $d_{n}=\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ where $x_{i} \in \mathcal{X}$ are the inputs $y_{i} \in \mathcal{Y}$ the outputs.

Goal

1. Explain connections between inputs x_{i} and outputs y_{i};
2. Predict the output y for a new input $x \in \mathcal{X}$.

Vocabulary

- When the output \mathcal{Y} is continuous, we are faced with a regression problem.
- When the output is categorical $(\operatorname{Card}(\mathcal{Y})$ finite $)$, it is a supervised classification problem.

Examples

- Most of the presented problems are supervised learning problems: we have to predict an output y by inputs x :

y_{i}	x_{i}	
Number	picture	Super. Class.
Word	curve	Super. Class.
Spam	word frequencies	Super. Class
O_{3} concentration	meteo. variables.	Regression

Examples

- Most of the presented problems are supervised learning problems: we have to predict an output y by inputs x :

y_{i}	x_{i}	
Number	picture	Super. Class.
Word	curve	Super. Class.
Spam	word frequencies	Super. Class
O_{3} concentration	meteo. variables.	Regression

Remark

- One output y_{i}.
- Wide range of input objects x_{i} (continuous, categorical, curves, pictures...).

Mathematical framework (begin)

- Given observations $d_{n}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ we want to explain/predict outputs $y_{i} \in \mathcal{Y}$ from inputs $x_{i} \in \mathcal{X}$.

Mathematical framework (begin)

- Given observations $d_{n}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ we want to explain/predict outputs $y_{i} \in \mathcal{Y}$ from inputs $x_{i} \in \mathcal{X}$.
- We have to find a machine (function) $f: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
f\left(x_{i}\right) \approx y_{i}, i=1, \ldots, n
$$

Mathematical framework (begin)

- Given observations $d_{n}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ we want to explain/predict outputs $y_{i} \in \mathcal{Y}$ from inputs $x_{i} \in \mathcal{X}$.
- We have to find a machine (function) $f: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
f\left(x_{i}\right) \approx y_{i}, i=1, \ldots, n
$$

- Requirement: a criterion to measure performances of any machine f.

Mathematical framework (begin)

- Given observations $d_{n}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ we want to explain/predict outputs $y_{i} \in \mathcal{Y}$ from inputs $x_{i} \in \mathcal{X}$.
- We have to find a machine (function) $f: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
f\left(x_{i}\right) \approx y_{i}, i=1, \ldots, n
$$

- Requirement: a criterion to measure performances of any machine f.
- We use a cost function $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}$such that

$$
\begin{cases}\ell\left(y, y^{\prime}\right)=0 & \text { if } y=y^{\prime} \\ \ell\left(y, y^{\prime}\right)>0 & \text { if } y \neq y^{\prime}\end{cases}
$$

Mathematical framework (begin)

- Given observations $d_{n}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ we want to explain/predict outputs $y_{i} \in \mathcal{Y}$ from inputs $x_{i} \in \mathcal{X}$.
- We have to find a machine (function) $f: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
f\left(x_{i}\right) \approx y_{i}, i=1, \ldots, n
$$

- Requirement: a criterion to measure performances of any machine f.
- We use a cost function $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}$such that

$$
\begin{cases}\ell\left(y, y^{\prime}\right)=0 & \text { if } y=y^{\prime} \\ \ell\left(y, y^{\prime}\right)>0 & \text { if } y \neq y^{\prime}\end{cases}
$$

Interpretation

$\ell\left(y, y^{\prime}\right)$ measure the cost (error) between one prediction y^{\prime} and one observation y.

Statistical framework

- One observation $=$ one random variable (X, Y) with an unknown probability distribution P .

Statistical framework

- One observation $=$ one random variable (X, Y) with an unknown probability distribution P .
- \mathbf{P} represents both the possible values of (X, Y) and the probabilities attached to theses values.

Statistical framework

- One observation $=$ one random variable (X, Y) with an unknown probability distribution P .
- \mathbf{P} represents both the possible values of (X, Y) and the probabilities attached to theses values.

Global performance of a machine f

- For a given cost function $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}$, we can measure the global (for all possible values of X and Y) performance of a machine $f: \mathcal{X} \rightarrow \mathcal{Y}$ by

$$
\ell(Y, f(X))
$$

Statistical framework

- One observation $=$ one random variable (X, Y) with an unknown probability distribution P .
- \mathbf{P} represents both the possible values of (X, Y) and the probabilities attached to theses values.

Global performance of a machine f

- For a given cost function $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}$, we can measure the global (for all possible values of X and Y) performance of a machine $f: \mathcal{X} \rightarrow \mathcal{Y}$ by

$$
\ell(Y, f(X))
$$

- Technical problem: this function is random \Longrightarrow (very) difficult to minimize.

Optimal machine

Risk of a machine

We measure the performance of a machine $f: \mathcal{X} \rightarrow \mathcal{Y}$ by its risk

$$
\mathcal{R}(f)=\mathrm{E}[\ell(Y, f(X))]
$$

Optimal machine

Risk of a machine

We measure the performance of a machine $f: \mathcal{X} \rightarrow \mathcal{Y}$ by its risk

$$
\mathcal{R}(f)=\mathbf{E}[\ell(Y, f(X))]
$$

Theoretical problem

- For the cost function $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}$, theoretical problem is to find

$$
f^{\star} \in \underset{f}{\operatorname{argmin}} \mathcal{R}(f) .
$$

Optimal machine

Risk of a machine

We measure the performance of a machine $f: \mathcal{X} \rightarrow \mathcal{Y}$ by its risk

$$
\mathcal{R}(f)=\mathbf{E}[\ell(Y, f(X))]
$$

Theoretical problem

- For the cost function $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}$, theoretical problem is to find

$$
f^{\star} \in \underset{f}{\operatorname{argmin}} \mathcal{R}(f) .
$$

- Such a function f^{\star} (if it exists) is called the optimal machine for the cost function ℓ.

In practice...

- The optimal machine f^{\star} generally depends on the unknown probability distribution P of (X, Y)

In practice...

- The optimal machine f^{\star} generally depends on the unknown probability distribution P of $(X, Y) \Longrightarrow f^{\star}$ is unknown in practice.

In practice...

- The optimal machine f^{\star} generally depends on the unknown probability distribution P of $(X, Y) \Longrightarrow f^{\star}$ is unknown in practice.
- Statistician's job consists in finding a good estimate $f_{n}=f_{n}\left(., \mathcal{D}_{n}\right)$ of f^{\star}

In practice...

- The optimal machine f^{\star} generally depends on the unknown probability distribution P of $(X, Y) \Longrightarrow f^{\star}$ is unknown in practice.
- Statistician's job consists in finding a good estimate $f_{n}=f_{n}\left(., \mathcal{D}_{n}\right)$ of $f^{\star} \Longrightarrow$ we have to find f_{n} such that $\mathcal{R}\left(f_{n}\right) \approx \mathcal{R}\left(f^{\star}\right)$.

In practice...

- The optimal machine f^{\star} generally depends on the unknown probability distribution P of $(X, Y) \Longrightarrow f^{\star}$ is unknown in practice.
- Statistician's job consists in finding a good estimate $f_{n}=f_{n}\left(., \mathcal{D}_{n}\right)$ of $f^{\star} \Longrightarrow$ we have to find f_{n} such that $\mathcal{R}\left(f_{n}\right) \approx \mathcal{R}\left(f^{\star}\right)$.

Definition

- We say that the estimate $\left(f_{n}\right)_{n}$ is universally consistant if for any distribution P

$$
\lim _{n \rightarrow \infty} \mathcal{R}\left(f_{n}\right)=\mathcal{R}\left(f^{\star}\right)
$$

In practice...

- The optimal machine f^{\star} generally depends on the unknown probability distribution P of $(X, Y) \Longrightarrow f^{\star}$ is unknown in practice.
- Statistician's job consists in finding a good estimate $f_{n}=f_{n}\left(., \mathcal{D}_{n}\right)$ of $f^{\star} \Longrightarrow$ we have to find f_{n} such that $\mathcal{R}\left(f_{n}\right) \approx \mathcal{R}\left(f^{\star}\right)$.

Definition

- We say that the estimate $\left(f_{n}\right)_{n}$ is universally consistant if for any distribution P

$$
\lim _{n \rightarrow \infty} \mathcal{R}\left(f_{n}\right)=\mathcal{R}\left(f^{\star}\right)
$$

- Interpretation: the risk of f_{n} comes closer to the optimal risk as n grows.

Choice of the cost function ℓ

- The proposed mathematical framework implies that a machine is performant with respect to a criterion (represented by the cost function ℓ).

Choice of the cost function ℓ

- The proposed mathematical framework implies that a machine is performant with respect to a criterion (represented by the cost function ℓ).
- It means that a machine f could be efficient for a cost function ℓ_{1} $\left(\mathcal{R}_{1}(f)\right.$ small) but not for another cost function $\ell_{2}\left(\mathcal{R}_{2}(f)\right.$ large $)$.

Choice of the cost function ℓ

- The proposed mathematical framework implies that a machine is performant with respect to a criterion (represented by the cost function ℓ).
- It means that a machine f could be efficient for a cost function ℓ_{1} ($\mathcal{R}_{1}(f)$ small) but not for another cost function $\ell_{2}\left(\mathcal{R}_{2}(f)\right.$ large $)$.

Important conclusion

In practice, it is crucial to choose a relevant cost function for the problem we are faced.

Outline

1. Motivations

2. Mathematical framework for statistical learning

3. Some criterion for regression and supervised classification

Regression
Binary classification
Scoring
4. Estimating the risk
5. Overfitting
6. Bibliography

Outline

1. Motivations

2. Mathematical framework for statistical learning

3. Some criterion for regression and supervised classification

> Regression

Binary classification
Scoring
4. Estimating the risk
5. Overfitting
6. Bibliography

Quadratic risk

- In regression $(\mathcal{Y}=\mathbb{R})$, quadratic cost is often used. It is defined by

Quadratic risk

- In regression $(\mathcal{Y}=\mathbb{R})$, quadratic cost is often used. It is defined by

$$
\begin{aligned}
\ell: \mathbb{R} \times \mathbb{R} & \rightarrow \mathbb{R}^{+} \\
\left(y, y^{\prime}\right) & \mapsto\left(y-y^{\prime}\right)^{2}
\end{aligned}
$$

Quadratic risk

- In regression $(\mathcal{Y}=\mathbb{R})$, quadratic cost is often used. It is defined by

$$
\begin{aligned}
\ell: \mathbb{R} \times \mathbb{R} & \rightarrow \mathbb{R}^{+} \\
\left(y, y^{\prime}\right) & \mapsto\left(y-y^{\prime}\right)^{2}
\end{aligned}
$$

- Quadratic risk for a machine or regression function $f: \mathcal{X} \rightarrow \mathbb{R}$ is thus defined by

$$
\mathcal{R}(f)=\mathrm{E}\left((Y-f(X))^{2}\right)
$$

Quadratic risk

- In regression $(\mathcal{Y}=\mathbb{R})$, quadratic cost is often used. It is defined by

$$
\begin{aligned}
\ell: \mathbb{R} \times \mathbb{R} & \rightarrow \mathbb{R}^{+} \\
\left(y, y^{\prime}\right) & \mapsto\left(y-y^{\prime}\right)^{2}
\end{aligned}
$$

- Quadratic risk for a machine or regression function $f: \mathcal{X} \rightarrow \mathbb{R}$ is thus defined by

$$
\mathcal{R}(f)=\mathbf{E}\left((Y-f(X))^{2}\right)
$$

- The winner

$$
f^{\star}(x)=\mathrm{E}[Y \mid X=x]
$$

is called the optimal regression function.

Quadratic risk

- In regression $(\mathcal{Y}=\mathbb{R})$, quadratic cost is often used. It is defined by

$$
\begin{aligned}
\ell: \mathbb{R} \times \mathbb{R} & \rightarrow \mathbb{R}^{+} \\
\left(y, y^{\prime}\right) & \mapsto\left(y-y^{\prime}\right)^{2}
\end{aligned}
$$

- Quadratic risk for a machine or regression function $f: \mathcal{X} \rightarrow \mathbb{R}$ is thus defined by

$$
\mathcal{R}(f)=\mathbf{E}\left((Y-f(X))^{2}\right)
$$

- The winner

$$
f^{\star}(x)=\mathrm{E}[Y \mid X=x]
$$

is called the optimal regression function.

- Indeed, $\forall f: \mathcal{X} \rightarrow \mathbb{R}$, we have

$$
\mathcal{R}\left(f^{\star}\right)=\mathrm{E}\left[\left(Y-f^{\star}(X)\right)^{2}\right] \leq \mathrm{E}\left[(Y-f(X))^{2}\right]=\mathcal{R}(f)
$$

Universal consistency

- Problem: f^{\star} is unknown in practice. We have ton find an estimate $f_{n}(x)=f_{n}\left(x, \mathcal{D}_{n}\right)$ such that $f_{n}(x) \approx f^{\star}(x)$.

Universal consistency

- Problem: f^{\star} is unknown in practice. We have ton find an estimate $f_{n}(x)=f_{n}\left(x, \mathcal{D}_{n}\right)$ such that $f_{n}(x) \approx f^{\star}(x)$.

Definition

f_{n} is universally consistant if

$$
\lim _{n \rightarrow+\infty} \mathcal{R}\left(f_{n}\right)=\mathcal{R}\left(f^{\star}\right)
$$

for any distribution of (X, Y).

Outline

1. Motivations

2. Mathematical framework for statistical learning

3. Some criterion for regression and supervised classification

Regression

Binary classification
Scoring
4. Estimating the risk
5. Overfitting
6. Bibliography

Error probability

- Binary classification means that output can only take 2 values $(\mathcal{Y}=\{-1,1\})$. In this case, we often use the $0-1$ loss function:

Error probability

- Binary classification means that output can only take 2 values $(\mathcal{Y}=\{-1,1\})$. In this case, we often use the $0-1$ loss function:

$$
\begin{aligned}
\ell:\{-1,1\} \times\{-1,1\} & \rightarrow \mathbb{R}^{+} \\
\left(y, y^{\prime}\right) & \mapsto \mathbf{1}_{y \neq y^{\prime}}
\end{aligned}
$$

Error probability

- Binary classification means that output can only take 2 values $(\mathcal{Y}=\{-1,1\})$. In this case, we often use the $0-1$ loss function:

$$
\begin{aligned}
\ell:\{-1,1\} \times\{-1,1\} & \rightarrow \mathbb{R}^{+} \\
\left(y, y^{\prime}\right) & \mapsto \mathbf{1}_{y \neq y^{\prime}}
\end{aligned}
$$

- The risk for a classification rule $f: \mathcal{X} \rightarrow\{-1,1\}$ is given by

$$
\mathcal{R}(f)=\mathbf{E}\left(\mathbf{1}_{f(X) \neq Y}\right)=\mathbf{P}(f(X) \neq Y)
$$

Error probability

- Binary classification means that output can only take 2 values $(\mathcal{Y}=\{-1,1\})$. In this case, we often use the $0-1$ loss function:

$$
\begin{aligned}
\ell:\{-1,1\} \times\{-1,1\} & \rightarrow \mathbb{R}^{+} \\
\left(y, y^{\prime}\right) & \mapsto \mathbf{1}_{y \neq y^{\prime}}
\end{aligned}
$$

- The risk for a classification rule $f: \mathcal{X} \rightarrow\{-1,1\}$ is given by

$$
\mathcal{R}(f)=\mathbf{E}\left(\mathbf{1}_{f(X) \neq Y}\right)=\mathbf{P}(f(X) \neq Y)
$$

- The winner (called the Bayes rule) is

$$
f^{\star}(x)=\left\{\begin{array}{cl}
-1 & \text { if } \mathbf{P}(Y=-1 \mid X=x) \geq \mathbf{P}(Y=1 \mid X=x) \\
1 & \text { otherwise }
\end{array}\right.
$$

Error probability

- Binary classification means that output can only take 2 values $(\mathcal{Y}=\{-1,1\})$. In this case, we often use the $0-1$ loss function:

$$
\begin{aligned}
\ell:\{-1,1\} \times\{-1,1\} & \rightarrow \mathbb{R}^{+} \\
\left(y, y^{\prime}\right) & \mapsto \mathbf{1}_{y \neq y^{\prime}}
\end{aligned}
$$

- The risk for a classification rule $f: \mathcal{X} \rightarrow\{-1,1\}$ is given by

$$
\mathcal{R}(f)=\mathbf{E}\left(\mathbf{1}_{f(X) \neq Y}\right)=\mathbf{P}(f(X) \neq Y)
$$

- The winner (called the Bayes rule) is

$$
f^{\star}(x)=\left\{\begin{array}{cl}
-1 & \text { if } \mathbf{P}(Y=-1 \mid X=x) \geq \mathbf{P}(Y=1 \mid X=x) \\
1 & \text { otherwise }
\end{array}\right.
$$

- For any classification rule f,

$$
\mathcal{R}\left(f^{\star}\right)=\mathbf{P}\left(f^{\star}(X) \neq Y\right) \leq \mathrm{P}(f(X) \neq Y)=\mathcal{R}(f)
$$

Universal consistency

- Problem: f^{\star} is unknown in practice. We have to find $f_{n}(x)=f_{n}\left(x, \mathcal{D}_{n}\right)$ such that $f_{n}(x) \approx f^{\star}(x)$.

Universal consistency

- Problem: f^{\star} is unknown in practice. We have to find $f_{n}(x)=f_{n}\left(x, \mathcal{D}_{n}\right)$ such that $f_{n}(x) \approx f^{\star}(x)$.

Definition

$\left(f_{n}\right)_{n}$ is universally consistent if

$$
\lim _{n \rightarrow \infty} \mathcal{R}\left(f_{n}\right)=\mathcal{R}\left(f^{\star}\right)
$$

for any distribution of (X, Y).

Universal consistency

- Problem: f^{\star} is unknown in practice. We have to find $f_{n}(x)=f_{n}\left(x, \mathcal{D}_{n}\right)$ such that $f_{n}(x) \approx f^{\star}(x)$.

Definition

$\left(f_{n}\right)_{n}$ is universally consistent if

$$
\lim _{n \rightarrow \infty} \mathcal{R}\left(f_{n}\right)=\mathcal{R}\left(f^{\star}\right)
$$

for any distribution of (X, Y).
\Longrightarrow See Exercise 1 - IMLO.

Outline

1. Motivations

2. Mathematical framework for statistical learning

3. Some criterion for regression and supervised classification

Regression
Binary classification
Scoring
4. Estimating the risk
5. Overfitting
6. Bibliography

Scoring function

- Always in binary classification $(\mathcal{Y}=\{-1,1\})$.
- But... instead of a classification rule $f: \mathcal{X} \rightarrow\{-1,1\}$, we want to find a function $S: \mathcal{X} \rightarrow \mathbb{R}$ such that

Scoring function

- Always in binary classification $(\mathcal{Y}=\{-1,1\})$.
- But... instead of a classification rule $f: \mathcal{X} \rightarrow\{-1,1\}$, we want to find a function $S: \mathcal{X} \rightarrow \mathbb{R}$ such that

- Such a function is a score function: instead of predicting the label y of a new $x \in \mathcal{X}$, we provide a score $S(x)$ with
- large values if we think that x is 1 ;
- small values if we think that x is -1 .

Perfect and random scores

Perfect and random scores

Definition

- Perfect score: S is perfect if there exists s^{\star} such that

$$
\mathrm{P}\left(Y=1 \mid S(X) \geq s^{\star}\right)=1 \quad \text { and } \quad \mathrm{P}\left(Y=-1 \mid S(X)<s^{\star}\right)=1
$$

Perfect and random scores

Definition

- Perfect score: S is perfect if there exists s^{\star} such that

$$
\mathrm{P}\left(Y=1 \mid S(X) \geq s^{\star}\right)=1 \quad \text { and } \quad \mathrm{P}\left(Y=-1 \mid S(X)<s^{\star}\right)=1 .
$$

- Random score: S is random if $S(X)$ and Y are independents.

Link between a score and a classification rule

- For a given score S and a threshold s, we obtain a classification rule:

$$
f_{s}(x)= \begin{cases}1 & \text { if } S(x) \geq s \\ -1 & \text { otherwise }\end{cases}
$$

- We have

	$f_{s}(X)=-1$	$f_{s}(X)=1$
$Y=-1$	OK	E_{1}
$Y=1$	E_{2}	OK

Link between a score and a classification rule

- For a given score S and a threshold s, we obtain a classification rule:

$$
f_{s}(x)= \begin{cases}1 & \text { if } S(x) \geq s \\ -1 & \text { otherwise }\end{cases}
$$

- We have

	$f_{s}(X)=-1$	$f_{s}(X)=1$
$Y=-1$	OK	E_{1}
$Y=1$	E_{2}	OK

- For any threshlod s, we can define 2 errors:

$$
\alpha(s)=\mathrm{P}\left(f_{s}(X)=1 \mid Y=-1\right)=\mathrm{P}(S(X) \geq s \mid Y=-1)
$$

and

$$
\beta(s)=\mathbf{P}\left(f_{s}(X)=-1 \mid Y=1\right)=\mathbf{P}(S(X)<s \mid Y=1) .
$$

We can also define

- Specificity: $s p(s)=\mathbf{P}(S(X)<s \mid Y=-1)=1-\alpha(s)$;
- Sensibility: $s e(s)=\mathbf{P}(S(X) \geq s \mid Y=1)=1-\beta(s)$.

We can also define

- Specificity: $s p(s)=\mathbf{P}(S(X)<s \mid Y=-1)=1-\alpha(s)$;
- Sensibility: $s e(s)=\mathbf{P}(S(X) \geq s \mid Y=1)=1-\beta(s)$.

Performance of a score

Visualize errors $\alpha(s)$ and $\beta(s)$ on a same graph for all thresholds s.

ROC curve

- Idea: define a 2-dimensionnel graph to represent errors $\alpha(s)$ and $\beta(s)$ for all values of s.

ROC curve

- Idea: define a 2-dimensionnel graph to represent errors $\alpha(s)$ and $\beta(s)$ for all values of s.

Definition

The ROC curve of a score S is the parametrized curve defined by

$$
\left\{\begin{array}{l}
x(s)=\alpha(s)=1-s p(s)=\mathbf{P}(S(X)>s \mid Y=-1) \\
y(s)=1-\beta(s)=s e(s)=\mathbf{P}(S(X) \geq s \mid Y=1)
\end{array}\right.
$$

ROC curve

- Idea: define a 2-dimensionnel graph to represent errors $\alpha(s)$ and $\beta(s)$ for all values of s.

Definition

The ROC curve of a score S is the parametrized curve defined by

$$
\left\{\begin{array}{l}
x(s)=\alpha(s)=1-s p(s)=\mathrm{P}(S(X)>s \mid Y=-1) \\
y(s)=1-\beta(s)=s e(s)=\mathrm{P}(S(X) \geq s \mid Y=1)
\end{array}\right.
$$

Remark

- For any score $S: x(-\infty)=y(-\infty)=1$ and $x(+\infty)=y(+\infty)=0$.

ROC curve

- Idea: define a 2-dimensionnel graph to represent errors $\alpha(s)$ and $\beta(s)$ for all values of s.

Definition

The ROC curve of a score S is the parametrized curve defined by

$$
\left\{\begin{array}{l}
x(s)=\alpha(s)=1-s p(s)=\mathrm{P}(S(X)>s \mid Y=-1) \\
y(s)=1-\beta(s)=s e(s)=\mathrm{P}(S(X) \geq s \mid Y=1)
\end{array}\right.
$$

Remark

- For any score $S: x(-\infty)=y(-\infty)=1$ and $x(+\infty)=y(+\infty)=0$.
- For a perfect score: $x\left(s^{\star}\right)=0$ and $y\left(s^{\star}\right)=1$.

ROC curve

- Idea: define a 2-dimensionnel graph to represent errors $\alpha(s)$ and $\beta(s)$ for all values of s.

Definition

The ROC curve of a score S is the parametrized curve defined by

$$
\left\{\begin{array}{l}
x(s)=\alpha(s)=1-s p(s)=\mathrm{P}(S(X)>s \mid Y=-1) \\
y(s)=1-\beta(s)=s e(s)=\mathrm{P}(S(X) \geq s \mid Y=1)
\end{array}\right.
$$

Remark

- For any score $S: x(-\infty)=y(-\infty)=1$ and $x(+\infty)=y(+\infty)=0$.
- For a perfect score: $x\left(s^{\star}\right)=0$ and $y\left(s^{\star}\right)=1$.
- For a random score: $x(s)=y(s) \forall s$.

Interpretation

We measure performance of a score by its ability to approach the line $y=1$ as fast as possible.

AUC

Definition

- Area Under ROC for a score S, denoted $A \cup C(S)$ is often used to measure performance of a S.
- Perfect score: $A \cup C(S)=1$. Random score: $A \cup C(S)=1 / 2$.

AUC

Definition

- Area Under ROC for a score S, denoted $A \cup C(S)$ is often used to measure performance of a S.
- Perfect score: $A \cup C(S)=1$. Random score: $A \cup C(S)=1 / 2$.

Proposition

- Let $\left(X_{1}, Y_{1}\right)$ et $\left(X_{2}, Y_{2}\right)$ be 2 i.i.d. observations. Then

$$
A \cup C(S)=\mathrm{P}\left(S\left(X_{1}\right) \geq S\left(X_{2}\right) \mid\left(Y_{1}, Y_{2}\right)=(1,-1)\right)
$$

AUC

Definition

- Area Under ROC for a score S, denoted $A \cup C(S)$ is often used to measure performance of a S.
- Perfect score: $A \cup C(S)=1$. Random score: $A \cup C(S)=1 / 2$.

Proposition

- Let $\left(X_{1}, Y_{1}\right)$ et $\left(X_{2}, Y_{2}\right)$ be 2 i.i.d. observations. Then

$$
A \cup C(S)=\mathrm{P}\left(S\left(X_{1}\right) \geq S\left(X_{2}\right) \mid\left(Y_{1}, Y_{2}\right)=(1,-1)\right)
$$

Conclusion

$A \cup C(S)$ measures the probability that S correctly orders two observations with different labels.

Example

Example

Optimal score

- $A \cup C(S)$ can be seen as a cost function for a score S;
- Question: is there an optimal score S^{\star} for this cost function?

Optimal score

- $A \cup C(S)$ can be seen as a cost function for a score S;
- Question: is there an optimal score S^{\star} for this cost function?

Theorem ([Clémençon et al., 2008])
Let $S^{\star}(x)=\mathrm{P}(Y=1 \mid X=x)$, then for any score S we have

$$
A \cup C\left(S^{\star}\right) \geq \operatorname{AUC}(S)
$$

Optimal score

- $A \cup C(S)$ can be seen as a cost function for a score S;
- Question: is there an optimal score S^{\star} for this cost function?

Theorem ([Clémençon et al., 2008])
Let $S^{\star}(x)=\mathrm{P}(Y=1 \mid X=x)$, then for any score S we have

$$
A \cup C\left(S^{\star}\right) \geq \operatorname{AUC}(S)
$$

Consequence

We have to find a "good" estimate $S_{n}(x)=S_{n}\left(x, \mathcal{D}_{n}\right)$ of

$$
S^{\star}(x)=\mathrm{P}(Y=1 \mid X=x)
$$

Summary

	Cost $\ell(y, f(x))$	Risk $\mathrm{E}[\ell(Y, f(X))]$	Winner f^{\star}
Regression	$(y-f(x))^{2}$	$\mathrm{E}[Y-f(X)]^{2}$	$\mathrm{E}[Y \mid X=x]$
Binary class.	$\mathbf{1}_{y \neq f(x)}$	$\mathbf{P}(Y \neq f(X))$	Bayes rule
Scoring		$A U C(S)$	$\mathbf{P}(Y=1 \mid X=x)$

Outline

1. Motivations

2. Mathematical framework for statistical learning

3. Some criterion for regression and supervised classification

Regression
Binary classification
Scoring
4. Estimating the risk
5. Overfitting
6. Bibliography

Reminder

- n observations $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d in $\mathcal{X} \times \mathcal{Y}$.

Goal

Given a cost function $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}$, we search a machine $f_{n}(x)=f_{n}\left(x, \mathcal{D}_{n}\right)$ closed to the optimal machine f^{\star} defined by

$$
f^{\star} \in \underset{f}{\operatorname{argmin}} \mathcal{R}(f)
$$

where $\mathcal{R}(f)=\mathrm{E}[\ell(Y, f(X))]$.

Reminder

- n observations $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d in $\mathcal{X} \times \mathcal{Y}$.

Goal

Given a cost function $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}$, we search a machine $f_{n}(x)=f_{n}\left(x, \mathcal{D}_{n}\right)$ closed to the optimal machine f^{\star} defined by

$$
f^{\star} \in \underset{f}{\operatorname{argmin}} \mathcal{R}(f)
$$

where $\mathcal{R}(f)=\mathrm{E}[\ell(Y, f(X))]$.

Question

Given a machine f_{n}, what can we say about its risk $\mathcal{R}\left(f_{n}\right)$?

Empirical risk

- Since the distribution of (X, Y) is unknown, we can't compute $\mathcal{R}\left(f_{n}\right)=\mathbf{E}\left[\ell\left(Y, f_{n}(X)\right)\right]$.

Empirical risk

- Since the distribution of (X, Y) is unknown, we can't compute $\mathcal{R}\left(f_{n}\right)=\mathrm{E}\left[\ell\left(Y, f_{n}(X)\right)\right]$.
- First idea: $\mathcal{R}\left(f_{n}\right)$ is an expectation, estimate it by its empirical version (law of large numbers)

$$
\mathcal{R}_{n}\left(f_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(Y_{i}, f_{n}\left(X_{i}\right)\right)
$$

Empirical risk

- Since the distribution of (X, Y) is unknown, we can't compute $\mathcal{R}\left(f_{n}\right)=\mathbf{E}\left[\ell\left(Y, f_{n}(X)\right)\right]$.
- First idea: $\mathcal{R}\left(f_{n}\right)$ is an expectation, estimate it by its empirical version (law of large numbers)

$$
\mathcal{R}_{n}\left(f_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(Y_{i}, f_{n}\left(X_{i}\right)\right)
$$

Problem

- \mathcal{D}_{n} has already been used to construct the machine $f_{n} \Longrightarrow$ LLN does not apply!
- Consequence: $\mathcal{R}_{n}\left(f_{n}\right)$ generally underestimates $\mathcal{R}\left(f_{n}\right)$.

Empirical risk

- Since the distribution of (X, Y) is unknown, we can't compute $\mathcal{R}\left(f_{n}\right)=\mathrm{E}\left[\ell\left(Y, f_{n}(X)\right)\right]$.
- First idea: $\mathcal{R}\left(f_{n}\right)$ is an expectation, estimate it by its empirical version (law of large numbers)

$$
\mathcal{R}_{n}\left(f_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(Y_{i}, f_{n}\left(X_{i}\right)\right)
$$

Problem

- \mathcal{D}_{n} has already been used to construct the machine $f_{n} \Longrightarrow$ LLN does not apply!
- Consequence: $\mathcal{R}_{n}\left(f_{n}\right)$ generally underestimates $\mathcal{R}\left(f_{n}\right)$.

One solution

Cross validation or bootstrap approaches.

Validation hold hout

- The simplest approach.
- It consists in splitting the data \mathcal{D}_{n} into:

1. a learning or training set $\mathcal{D}_{n, \text { train }}$ used to learn a machine f_{n};
2. a validation or test set $\mathcal{D}_{n, \text { test }}$ to estimate the risk of f_{n}.

Validation hold hout

- The simplest approach.
- It consists in splitting the data \mathcal{D}_{n} into:

1. a learning or training set $\mathcal{D}_{n, \text { train }}$ used to learn a machine f_{n};
2. a validation or test set $\mathcal{D}_{n, \text { test }}$ to estimate the risk of f_{n}.

Algorithm

Inputs. \mathcal{D}_{n} : data, $\{\mathcal{T}, \mathcal{V}\}$: a partition of $\{1, \ldots, n\}$.

1. Learn the machine with $\mathcal{D}_{n, \text { train }}=\left\{\left(X_{i}, Y_{i}\right): i \in \mathcal{T}\right\} \Longrightarrow f_{n, \text { train }}$;
2. Compute $\widehat{\mathcal{R}}_{n}\left(f_{n}\right)=\frac{1}{|\mathcal{V}|} \sum_{i \in \mathcal{V}} \ell\left(Y_{i}, f_{n, \text { train }}\left(X_{i}\right)\right)$.

Validation hold hout

- The simplest approach.
- It consists in splitting the data \mathcal{D}_{n} into:

1. a learning or training set $\mathcal{D}_{n, \text { train }}$ used to learn a machine f_{n};
2. a validation or test set $\mathcal{D}_{n, \text { test }}$ to estimate the risk of f_{n}.

Algorithm

Inputs. \mathcal{D}_{n} : data, $\{\mathcal{T}, \mathcal{V}\}$: a partition of $\{1, \ldots, n\}$.

1. Learn the machine with $\mathcal{D}_{n, \text { train }}=\left\{\left(X_{i}, Y_{i}\right): i \in \mathcal{T}\right\} \Longrightarrow f_{n, \text { train }}$;
2. Compute $\widehat{\mathcal{R}}_{n}\left(f_{n}\right)=\frac{1}{|\mathcal{V}|} \sum_{i \in \mathcal{V}} \ell\left(Y_{i}, f_{n, \text { train }}\left(X_{i}\right)\right)$.

Comments

$n_{\text {train }}$ and $n_{\text {test }}$ should be large enough to

1. fit $f_{n, \text { train }}$;
2. estimate its risk $\mathcal{R}\left(f_{n, \text { train }}\right)$.

K fold cross-validation

- Idea: repeat validation hold out algorithm on each element of a data partition.

Algorithme - CV

Inputs. \mathcal{D}_{n} : data, K an integer ;

1. Define a random partition $\left\{\mathcal{I}_{1}, \ldots, \mathcal{I}_{K}\right\}$ of $\{1, \ldots, n\}$;
2. For $k=1, \ldots, K$
2.1 $\mathcal{I}_{\text {train }}=\{1, \ldots, n\} \backslash \mathcal{I}_{k}$ and $\mathcal{I}_{\text {test }}=\mathcal{I}_{k}$;
2.2 Learn the machine with $\mathcal{D}_{n, \text { app }}=\left\{\left(X_{i}, Y_{i}\right): i \in \mathcal{I}_{\text {app }}\right\} \Longrightarrow f_{n, k}$;
2.3 Let $f_{n}\left(X_{i}\right)=f_{n, k}\left(X_{i}\right)$ for $i \in \mathcal{I}_{\text {test }}$;
3. Output

$$
\widehat{\mathcal{R}}_{n}\left(f_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(Y_{i}, f_{n}\left(X_{i}\right)\right)
$$

Comments

- More useful than validation hold out when n is small.
- More accurate but more time consuming.
- K has to be chosen by the user (we often set $K=10$).

Leave one out

- When $K=n$, we obtain leave one out cross validation.
- Risk is estimated by

$$
\widehat{\mathcal{R}}_{n}\left(f_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(Y_{i}, f_{n}^{i}\left(X_{i}\right)\right)
$$

where f_{n}^{i} stands for the machine defined on \mathcal{D}_{n} after deleted the i th observation.

- Exercises 1-3, IML1.

Outline

1. Motivations

2. Mathematical framework for statistical learning
3. Some criterion for regression and supervised classification

Regression
Binary classification
Scoring
4. Estimating the risk
5. Overfitting
6. Bibliography

- Most of statistical learning algorithms depends on parameters (λ).
- Most of statistical learning algorithms depends on parameters (λ).

Examples

- number of input variables in linear and logistic models.
- penalty parameters for lasso and ridge regressions.
- depth for tree algorithms.
- number of nearest neighbors.
- bandwidth of kernel regression estimators.
- number of iterations for boosting algorithms.
- ...
- Most of statistical learning algorithms depends on parameters (λ).

Examples

- number of input variables in linear and logistic models.
- penalty parameters for lasso and ridge regressions.
- depth for tree algorithms.
- number of nearest neighbors.
- bandwidth of kernel regression estimators.
- number of iterations for boosting algorithms.
- The choice of theses parameters reveals crucial for the performance of the machine.
- Parameter λ often measures model complexity:
- Parameter λ often measures model complexity:

Model complexity

- λ small \Longrightarrow restrictive model \Longrightarrow bad fitting \Longrightarrow bias \nearrow, variance
- Parameter λ often measures model complexity:

Model complexity

- λ small \Longrightarrow restrictive model \Longrightarrow bad fitting \Longrightarrow bias \nearrow, variance
- λ large \Longrightarrow flexible (complex) model \Longrightarrow overfitting \Longrightarrow bias \searrow, variance \nearrow
- Parameter λ often measures model complexity:

Model complexity

- λ small \Longrightarrow restrictive model \Longrightarrow bad fitting \Longrightarrow bias \nearrow, variance
- λ large \Longrightarrow flexible (complex) model \Longrightarrow overfitting \Longrightarrow bias \searrow, variance \nearrow

Overfitting

Good fitting on the training data (i.e. $f\left(X_{i}\right)=Y_{i}$) but poor predictive performances on new individuals.

Complexity (λ)

Overfitting for regression

Overfitting for regression

Overfitting for supervised classification

Overfitting for supervised classification

- Run application overfitting.app.

Outline

1. Motivations

2. Mathematical framework for statistical learning

3. Some criterion for regression and supervised classification

Regression
Binary classification
Scoring
4. Estimating the risk
5. Overfitting
6. Bibliography

References i

Besse, P. and Laurent, B.
Apprentissage Statistique modeélisation, preévision, data mining.
INSA - Toulouse.
http://www.math.univ-toulouse.fr/~besse/pub/Appren_stat.pdf.
Bousquet, O., Boucheron, S., and Lugosi, G. (2003). Introduction to Statistical Learning Theory, chapter Advanced Lectures on Machine Learning.
Springer.
R Clémençon, S., Lugosi, G., and Vayatis, N. (2008).
Ranking and empirical minimization of u-statistics.
The Annals of Statistics, 36(2):844-874.

References ii

Rastie, T., Tibshirani, R., and Friedman, J. (2009).
The Elements of Statistical Learning: Data Mining, Inference, and Prediction.
Springer, second edition.
E- James, G., Witten, D., Hastie, T., and Tibshirani, R. (2015).
The Elements of Statistical Learning: Data Mining, Inference, and Prediction.
Springer.
閊 Vapnik, V. (2000).
The Nature of Statistical Learning Theory.
Springer, second edition.

Part II

Parametric versus nonparametric approaches

Outline

1. Some parametric methods

Linear and logistic models
Linear discriminant analysis
Just one explanatory variable
LDA: general case
2. Some nonparametric methods

Kernel and nearest neighbors methods
The curse of dimensionality
3. Empirical risk minimization

Setting
Caret package
4. Bibliography

Mathematical framework

- n i.i.d observations $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ in $\mathcal{X} \times \mathcal{Y}$.
- $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}$cost function.

Problem

Find a good estimate $f_{n}()=.f_{n}\left(., \mathcal{D}_{n}\right)$ of

$$
f^{\star} \in \underset{f}{\operatorname{argmin}} \mathcal{R}(f)=\mathrm{E}[\ell(Y, f(X))] .
$$

Mathematical framework

- n i.i.d observations $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ in $\mathcal{X} \times \mathcal{Y}$.
- $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}$cost function.

Problem

Find a good estimate $f_{n}()=.f_{n}\left(., \mathcal{D}_{n}\right)$ of

$$
f^{\star} \in \underset{f}{\operatorname{argmin}} \mathcal{R}(f)=\mathbf{E}[\ell(Y, f(X))] .
$$

Model

- Modelize remains to fix a class of functions \mathcal{F} and to assume that $f^{\star} \in \mathcal{F}$.

Mathematical framework

- n i.i.d observations $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ in $\mathcal{X} \times \mathcal{Y}$.
- $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}$cost function.

Problem

Find a good estimate $f_{n}()=.f_{n}\left(., \mathcal{D}_{n}\right)$ of

$$
f^{\star} \in \underset{f}{\operatorname{argmin}} \mathcal{R}(f)=\mathrm{E}[\ell(Y, f(X))] .
$$

Model

- Modelize remains to fix a class of functions \mathcal{F} and to assume that $f^{\star} \in \mathcal{F}$.
- Modelize $=$ make an assumption.

Given $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, find the best machine $f \in \mathcal{F}$.

Given $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, find the best machine $f \in \mathcal{F}$.

$$
\begin{aligned}
\mathcal{R}(\hat{f})-\mathcal{R}^{\star} & =\mathcal{R}(\hat{f})-\inf _{f \in \mathcal{F}} \mathcal{R}(f)+\inf _{f \in \mathcal{F}} \mathcal{R}(f)-\mathcal{R}^{\star} \\
& =\text { Estimation error }+ \text { Approximation error. }
\end{aligned}
$$

Remarks

- These two terms vary in opposite directions.
- Statistician's job: trade-off between these two terms.

Parametric and non parametric

Definition

- If $\mathcal{F}=\left\{f_{\theta}: \theta \in \Theta\right\}$ with Θ of finite dimension, then the model is parametric.
- If \mathcal{F} is an infinite dimensional space, then the model is non-parametric.

Parametric and non parametric

Definition

- If $\mathcal{F}=\left\{f_{\theta}: \theta \in \Theta\right\}$ with Θ of finite dimension, then the model is parametric.
- If \mathcal{F} is an infinite dimensional space, then the model is non-parametric.

Remark

- Non-parametric seems more interesting (since less restrictive).
- There is a price to be paid...

Parametric and non parametric

Definition

- If $\mathcal{F}=\left\{f_{\theta}: \theta \in \Theta\right\}$ with Θ of finite dimension, then the model is parametric.
- If \mathcal{F} is an infinite dimensional space, then the model is non-parametric.

Remark

- Non-parametric seems more interesting (since less restrictive).
- There is a price to be paid... More difficult to estimate for such models.

Parametric and non parametric

Definition

- If $\mathcal{F}=\left\{f_{\theta}: \theta \in \Theta\right\}$ with Θ of finite dimension, then the model is parametric.
- If \mathcal{F} is an infinite dimensional space, then the model is non-parametric.

Remark

- Non-parametric seems more interesting (since less restrictive).
- There is a price to be paid... More difficult to estimate for such models.
- Loss of accuracy in NP models. In this part, we will study this loss.

Outline

1. Some parametric methods

Linear and logistic models
Linear discriminant analysis
Just one explanatory variable
LDA: general case
2. Some nonparametric methods

Kernel and nearest neighbors methods
The curse of dimensionality
3. Empirical risk minimization

Setting

Caret package
4. Bibliography

Outline

1. Some parametric methods

Linear and logistic models
Linear discriminant analysis
Just one explanatory variable
IDA: general case
2. Some nonparametric methods

Kernel and nearest neighbors methods
The curse of dimensionality
3. Empirical risk minimization

Setting

Caret package
4. Bibliography

The linear model

- In regression with $\mathcal{X}=\mathbb{R}^{d}$, the linear model is the parametric reference model.
- This model makes the assumption that the regression function is linear:

$$
m^{\star}(x)=\mathbb{E}[Y \mid X=x]=\beta_{1} x_{1}+\ldots+\beta_{d} x_{d} .
$$

The linear model

- In regression with $\mathcal{X}=\mathbb{R}^{d}$, the linear model is the parametric reference model.
- This model makes the assumption that the regression function is linear:

$$
m^{\star}(x)=\mathbb{E}[Y \mid X=x]=\beta_{1} x_{1}+\ldots+\beta_{d} x_{d} .
$$

- Or equivalently

$$
Y=\beta_{1} X_{1}+\ldots+\beta_{d} X_{d}+\varepsilon
$$

where $\mathrm{E}[\varepsilon \mid X=x]=0$ and $\mathrm{V}[\varepsilon \mid X=x]=\sigma^{2}$.

Remark

Estimate $m^{\star} \Longleftrightarrow$ estimate $\beta \in \mathbb{R}^{d}$ (finite dimension \Longrightarrow parametric model).

Some properties

- Least squares estimates minimize

$$
\sum_{i=1}^{n} \varepsilon_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\left(\beta_{1} X_{i 1}+\ldots+\beta_{d} X_{i d}\right)\right)^{2}
$$

The solution is given by

$$
\hat{\beta}_{n}=\left(\mathbb{X}^{t} \mathbb{X}\right)^{-1} \mathbb{X}^{t} \mathbb{Y}
$$

Some properties

- Least squares estimates minimize

$$
\sum_{i=1}^{n} \varepsilon_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\left(\beta_{1} X_{i 1}+\ldots+\beta_{d} X_{i d}\right)\right)^{2}
$$

The solution is given by

$$
\hat{\beta}_{n}=\left(\mathbb{X}^{t} \mathbb{X}\right)^{-1} \mathbb{X}^{t} \mathbb{Y}
$$

- Regression function m^{\star} is thus estimated by

$$
\hat{m}_{n}(x)=\hat{\beta}_{1} x_{1}+\ldots+\hat{\beta}_{d} x_{d}
$$

Assumption

Under some technical assumptions, we prove that

- $\mathbf{E}[\hat{\beta}]=\beta$ and $\mathbf{V}[\hat{\beta}]=\left(\mathbb{X}^{t} \mathbb{X}\right)^{-1} \sigma^{2}$.

We deduce that (exercise 2, IML0)

$$
\mathrm{E}\left[\|\hat{\beta}-\beta\|^{2}\right]=\mathrm{O}\left(\frac{1}{n}\right) \quad \text { and } \quad \mathrm{E}\left[\left(\hat{m}_{n}(x)-m^{\star}(x)\right)^{2}\right]=\mathrm{O}\left(\frac{1}{n}\right)
$$

Assumption

Under some technical assumptions, we prove that

- $\mathbf{E}[\hat{\beta}]=\beta$ and $\mathbf{V}[\hat{\beta}]=\left(\mathbb{X}^{t} \mathbb{X}\right)^{-1} \sigma^{2}$.

We deduce that (exercise 2, IML0)

$$
\mathrm{E}\left[\|\hat{\beta}-\beta\|^{2}\right]=\mathrm{O}\left(\frac{1}{n}\right) \quad \text { and } \quad \mathrm{E}\left[\left(\hat{m}_{n}(x)-m^{\star}(x)\right)^{2}\right]=\mathrm{O}\left(\frac{1}{n}\right)
$$

Remark

- Least squares estimates achieve the parametric rate $(1 / n)$.
- Moreover, if errors terms $\varepsilon_{i}, i=1 \ldots, n$ are Gaussian, we can compute the distribution of the least squares estimates (confidence intervals, test statistics...).
- See [Grob, 2003, Cornillon and Matzner-Løber, 2011] for more information.

Example

- Linear model to explain ozone concentration.

```
> model_lin <- lm(V4~V5+V6+V7+V8+V9+V10+V11+V12+V13,data=Ozone)
> summary(model_lin)
Coefficients:
    Estimate Std. Error t value Pr (>|t|)
(Intercept) 59.9517553 38.3286940 1.564 0.119421
V5 -0.0139111 0.0072511 -1.918 0.056527.
V6 0.0276862 0.1741433 0.159 0.873847
V7 0.0808740 0.0237694 3.402 0.000812 ***
V8 0.1503404 0.0692994 2.169 0.031272*
V9 0.5253439 0.1247136 4.212 3.87e-05 ***
V10 -0.0010052 0.0003944 -2.549 0.011586 *
V11 0.0049796 0.0147772 0.337 0.736501
V12 -0.1543882 0.1192917 -1.294 0.197140
V13 -0.0033951 0.0048963 -0.693 0.488883
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' , 1
```


Logistic model

- Logistic model is the "brother" of the linear model in the context of binary classification $(\mathcal{Y}=\{-1,1\})$.
- This model makes the assumption that (the logit transformation of) the probability $p(x)=\mathrm{P}(Y=1 \mid X=x)$ is linear:

$$
\operatorname{logit} p(x)=\log \frac{p(x)}{1-p(x)}=\beta_{1} x_{1}+\ldots+\beta_{d} x_{d}=x^{t} \beta
$$

Logistic model

- Logistic model is the "brother" of the linear model in the context of binary classification $(\mathcal{Y}=\{-1,1\})$.
- This model makes the assumption that (the logit transformation of) the probability $p(x)=\mathbf{P}(Y=1 \mid X=x)$ is linear:

$$
\operatorname{logit} p(x)=\log \frac{p(x)}{1-p(x)}=\beta_{1} x_{1}+\ldots+\beta_{d} x_{d}=x^{t} \beta
$$

- $\beta=\left(\beta_{1}, \ldots, \beta_{d}\right) \in \mathbb{R}^{d} \Longrightarrow$ parametric model.
- Unknown parameters $\beta_{1}, \ldots, \beta_{d}$ are estimated by maximizing the (log)-likelihood:

$$
\mathcal{L}_{n}(\beta)=\sum_{i=1}^{n}\left\{y_{i} x_{i}^{t} \beta-\log \left(1+\exp \left(x_{i}^{t} \beta\right)\right)\right\}
$$

Some properties

Theorem [Fahrmeir and Kaufmann, 1985]

Under technical assumptions we have

1. the ML estimate $\left\{\hat{\beta}_{n}\right\}_{n}$ is consistant: $\hat{\beta}_{n} \xrightarrow{\mathbf{P}} \beta$;
2. the ML estimate $\left\{\hat{\beta}_{n}\right\}_{n}$ is asymptotically gaussian:

$$
\sqrt{n}\left(\hat{\beta}_{n}-\beta\right) \stackrel{\mathcal{L}}{\rightarrow} \mathcal{N}\left(0, \mathcal{I}^{-1}(\beta)\right) .
$$

Some properties

Theorem [Fahrmeir and Kaufmann, 1985]

Under technical assumptions we have

1. the ML estimate $\left\{\hat{\beta}_{n}\right\}_{n}$ is consistant: $\hat{\beta}_{n} \xrightarrow{\mathbf{P}} \beta$;
2. the ML estimate $\left\{\hat{\beta}_{n}\right\}_{n}$ is asymptotically gaussian:

$$
\sqrt{n}\left(\hat{\beta}_{n}-\beta\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \mathcal{I}^{-1}(\beta)\right) .
$$

3. Rate of convergence:

$$
\mathrm{E}\left[\|\hat{\beta}-\beta\|^{2}\right]=\mathrm{O}\left(\frac{1}{n}\right)
$$

Some properties

Theorem [Fahrmeir and Kaufmann, 1985]

Under technical assumptions we have

1. the ML estimate $\left\{\hat{\beta}_{n}\right\}_{n}$ is consistant: $\hat{\beta}_{n} \xrightarrow{\mathbf{P}} \beta$;
2. the ML estimate $\left\{\hat{\beta}_{n}\right\}_{n}$ is asymptotically gaussian:

$$
\sqrt{n}\left(\hat{\beta}_{n}-\beta\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \mathcal{I}^{-1}(\beta)\right) .
$$

3. Rate of convergence:

$$
\mathrm{E}\left[\|\hat{\beta}-\beta\|^{2}\right]=\mathrm{O}\left(\frac{1}{n}\right)
$$

Important remark
Again, the ML estimate achieves the parametric rate $(1 / n)$.

Example

- In R, we can fit a logistic model with the glm function.

```
> model_log <- glm(type~.,data=spam,family=binomial)
> summary(model_log)$coefficients[1:5,]
    Estimate Std. Error z value Pr}(>|z|
(Intercept) -1.5686144 0.1420362 -11.043767 2.349719e-28
make -0.3895185 0.2314521 -1.682933 9.238799e-02
address -0.1457768 0.0692792 -2.104194 3.536157e-02
all 0.1141402 0.1103011 1.034806 3.007594e-01
num3d 2.2515195 1.5070099 1.494031 1.351675e-01
```


Outline

1. Some parametric methods

Linear and logistic models

Linear discriminant analysis
Just one explanatory variable
LDA: general case
2. Some nonparametric methods

Kernel and nearest neighbors methods
The curse of dimensionality
3. Empirical risk minimization

Setting
Caret package
4. Bibliography

Presentation

- Logistic regression directly modelizes the parameter of the distribution of $Y \mid X=x$.
- Linear discriminant analysis do the opposite. It consists in
- modelizing the distributions of $X \mid Y=j$ for $j=1, \ldots, K$ by gaussian distributions $f_{j}(x)$.

Presentation

- Logistic regression directly modelizes the parameter of the distribution of $Y \mid X=x$.
- Linear discriminant analysis do the opposite. It consists in
- modelizing the distributions of $X \mid Y=j$ for $j=1, \ldots, K$ by gaussian distributions $f_{j}(x)$.
- calculating the posterior distribution $Y \mid X=x$ with Bayes formula :

$$
\mathbf{P}(Y=j \mid X=x)=\frac{\pi_{j} f_{j}(x)}{\sum_{\ell=1}^{K} \pi_{\ell} f_{\ell}(x)}
$$

where $\pi_{j}=\mathbf{P}(Y=j), j=1, \ldots, K$.

Example: Fisher's iris problem

- Explain iris species by lengths and widths of petals and sepals.

Example: Fisher's iris problem

- Explain iris species by lengths and widths of petals and sepals.
- 5 variables :
- the target variable species (categorical).
- lengths and widths of petals and sepals.

- We first want to explain Species by
- We can draw the following boxplot.
> ggplot(iris)+aes(x=Species, $\mathrm{y}=$ Petal.Length)+geom_boxplot()+theme_bw()

Visualize densities

- geom_density allows to visualize conditional distributions of $X \mid Y=j$, $j=1,2,3$.
> ggplot(iris)+aes(x=Petal.Length, color=Species)+geom_density(size=1)

virginica

A model

- The three densities on the graph look like Gaussian densities.

A model

- The three densities on the graph look like Gaussian densities.
- Let $X=$ Petal.Length and $Y=$ Species. We assume that distributions of X given $Y=k$ are Gaussians $\mathcal{N}\left(\mu_{k}, \sigma^{2}\right), k=1,2,3$.

A model

- The three densities on the graph look like Gaussian densities.
- Let $X=$ Petal.Length and $Y=$ Species. We assume that distributions of X given $Y=k$ are Gaussians $\mathcal{N}\left(\mu_{k}, \sigma^{2}\right), k=1,2,3$.
- Densities of $X \mid Y=k$ are thus given by

$$
f_{X \mid Y=k}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(x-\mu_{k}\right)^{2}}{2 \sigma^{2}}\right) .
$$

Estimation

- To obtain posterior probabilities $\mathbf{P}(Y=k \mid X=x)$, we have to estimate:

Estimation

- To obtain posterior probabilities $\mathrm{P}(Y=k \mid X=x)$, we have to estimate:
- parameters μ_{k} et σ^{2} of the Gaussian distributions;
- prior probabilities $\pi_{k}=\mathbf{P}(Y=k)$.

Estimation

- To obtain posterior probabilities $\mathrm{P}(Y=k \mid X=x)$, we have to estimate:
- parameters μ_{k} et σ^{2} of the Gaussian distributions;
- prior probabilities $\pi_{k}=\mathbf{P}(Y=k)$.

Estimators

These quantities are naturally estimated by

$$
\hat{\mu}_{k}=\frac{1}{n_{k}} \sum_{i: Y_{i}=k} X_{i}, \quad \widehat{\sigma^{2}}=\frac{1}{n-2} \sum_{k=1}^{k} \sum_{i: Y_{i}=k}\left(X_{i}-\hat{\mu}_{k}\right)^{2}
$$

Estimation

- To obtain posterior probabilities $\mathbf{P}(Y=k \mid X=x)$, we have to estimate:
- parameters μ_{k} et σ^{2} of the Gaussian distributions;
- prior probabilities $\pi_{k}=\mathbf{P}(Y=k)$.

Estimators

These quantities are naturally estimated by

$$
\begin{gathered}
\hat{\mu}_{k}=\frac{1}{n_{k}} \sum_{i: Y_{i}=k} X_{i}, \quad \widehat{\sigma^{2}}=\frac{1}{n-2} \sum_{k=1}^{K} \sum_{i: Y_{i}=k}\left(X_{i}-\hat{\mu}_{k}\right)^{2} \\
\hat{\pi}_{k}=\frac{n_{k}}{n} \quad \text { where } \quad n_{k}=\sum_{i=1}^{n} 1_{\left\{Y_{i}=k\right\}} .
\end{gathered}
$$

Example with R

```
> library(MASS)
> model <- lda(Species~Petal.Length,data=iris)
> model
Call:
lda(Species ~ Petal.Length, data = iris)
Prior probabilities of groups:
    setosa versicolor virginica
    0.3333333 0.3333333 0.3333333
Group means:
    Petal.Length
setosa 1.462
versicolor 4.260
virginica 5.552
Coefficients of linear discriminants:
    LD1
Petal.Length 2.323774
```


Making predictions

- predict function allows to predict species of new iris:

```
> don_pred
    Sepal.Length Sepal.Width Petal.Length Petal.Width
                5.0 3.6 1.4 0.2
        5.5 2.4 1.0
        7.1 3.0 5.9 2.1
        6.7 3.3
        5.7 2.5
```


Making predictions

- predict function allows to predict species of new iris:

```
> don_pred
    Sepal.Length Sepal.Width Petal.Length Petal.Width
\begin{tabular}{llll}
5.0 & 3.6 & 1.4 & 0.2 \\
5.5 & 2.4 & 3.7 & 1.0 \\
7.1 & 3.0 & 5.9 & 2.1 \\
6.7 & 3.3 & 5.7 & 2.5
\end{tabular}
```

- We just have to enter

```
> predict(model,newdata=don_pred)
$class
[1] setosa versicolor virginica virginica
Levels: setosa versicolor virginica
$posterior
    setosa versicolor virginica
    1.000000e+00 2.589892e-10 6.170197e-21
    3.123152e-06 9.997752e-01 2.217125e-04
    1.113402e-23 9.723296e-04 9.990277e-01
    9.198362e-22 3.913109e-03 9.960869e-01
```

- Goal: explain iris specie by the 4 explanatory variables Sepal. Length, Sepal.Width, Petal.Length, Petal.Width. We denote by $X_{1}, X_{2}, X_{3}, X_{4}$ these 4 variables and $X=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$.
- Goal: explain iris specie by the 4 explanatory variables Sepal. Length, Sepal.Width, Petal.Length, Petal.Width. We denote by $X_{1}, X_{2}, X_{3}, X_{4}$ these 4 variables and $X=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$.
- The approach is similar to the previous case (1 variable)
- Goal: explain iris specie by the 4 explanatory variables Sepal. Length, Sepal.Width, Petal.Length, Petal.Width. We denote by $X_{1}, X_{2}, X_{3}, X_{4}$ these 4 variables and $X=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$.
- The approach is similar to the previous case (1 variable)

1. We model distributions of $X \mid Y=k$ by Gaussian multivariate distributions.
2. We use Bayes formula to obtain posterior probabilities

$$
\mathbf{P}(Y=k \mid X=x) .
$$

- Distributions of $X \mid Y=k$ are are assumed to be Gaussians $\mathcal{N}\left(\mu_{k}, \Sigma\right)$ where $\mu_{k} \in \mathbb{R}^{p}$ and Σ is a $p \times p$ definite positive matrix. Densities of $X \mid Y=k$ are thus given by:

$$
f_{X \mid Y=k}(x)=\frac{1}{(2 \pi \operatorname{det}(\Sigma))^{p / 2}} \exp \left(-\frac{1}{2}\left(x-\mu_{k}\right)^{t} \Sigma^{-1}\left(x-\mu_{k}\right)\right) .
$$

LDA: general case

- Distributions of $X \mid Y=k$ are are assumed to be Gaussians $\mathcal{N}\left(\mu_{k}, \Sigma\right)$ where $\mu_{k} \in \mathbb{R}^{p}$ and Σ is a $p \times p$ definite positive matrix. Densities of $X \mid Y=k$ are thus given by:

$$
f_{X \mid Y=k}(x)=\frac{1}{(2 \pi \operatorname{det}(\Sigma))^{p / 2}} \exp \left(-\frac{1}{2}\left(x-\mu_{k}\right)^{t} \Sigma^{-1}\left(x-\mu_{k}\right)\right) .
$$

- Posterior probabilities $\mathrm{P}(Y=k \mid X=x)$ are obtained thanks to the Bayes formula

$$
\mathrm{P}(Y=k \mid X=x)=\frac{\pi_{k} f_{X \mid Y=k}(x)}{f(x)}
$$

where $f(x)$, the density of X, is computed from $f_{X \mid Y=k}(x)$ and from prior probabilites $\pi_{k}=\mathrm{P}(Y=k)$.

Estimation

- We again need to estimate unknown parameters of the model:

Estimation

- We again need to estimate unknown parameters of the model:
- mean vectors $\mu_{k}, k=1, \ldots, K$ and covariance matrix Σ of the Gaussian distributions;
- prior probabilities $\pi_{k}=\mathbf{P}(Y=k)$.

Estimation

- We again need to estimate unknown parameters of the model:
- mean vectors $\mu_{k}, k=1, \ldots, K$ and covariance matrix Σ of the Gaussian distributions;
- prior probabilities $\pi_{k}=\mathbf{P}(Y=k)$.

Estimators

They are defined by

$$
\hat{\mu}_{k}=\frac{1}{n_{k}} \sum_{i: Y_{i}=k} X_{i}, \quad \widehat{\Sigma}=\frac{1}{n-K} \sum_{k=1}^{K} \sum_{i: Y_{i}=k}\left(X_{i}-\hat{\mu}_{k}\right)\left(X_{i}-\hat{\mu}_{k}\right)^{t}
$$

Estimation

- We again need to estimate unknown parameters of the model:
- mean vectors $\mu_{k}, k=1, \ldots, K$ and covariance matrix Σ of the Gaussian distributions;
- prior probabilities $\pi_{k}=\mathbf{P}(Y=k)$.

Estimators

They are defined by

$$
\begin{gathered}
\hat{\mu}_{k}=\frac{1}{n_{k}} \sum_{i: Y_{i}=k} X_{i}, \quad \hat{\Sigma}=\frac{1}{n-K} \sum_{k=1}^{K} \sum_{i: Y_{i}=k}\left(X_{i}-\hat{\mu}_{k}\right)\left(X_{i}-\hat{\mu}_{k}\right)^{t} \\
\hat{\pi}_{k}=\frac{n_{k}}{n} \quad \text { with } \quad n_{k}=\sum_{i=1}^{n} 1_{\left\{Y_{i}=k\right\}} .
\end{gathered}
$$

Example with R

```
> full_model<- Ida(Species~.,data=iris)
> full_model
Call:
lda(Species ~ ., data = iris)
Prior probabilities of groups:
        setosa versicolor virginica
    0.3333333 0.3333333 0.3333333
Group means:
    Sepal.Length Sepal.Width Petal.Length Petal.Width
\begin{tabular}{lllll} 
setosa & 5.006 & 3.428 & 1.462 & 0.246 \\
versicolor & 5.936 & 2.770 & 4.260 & 1.326 \\
virginica & 6.588 & 2.974 & 5.552 & 2.026
\end{tabular}
```


Making predictions

- predict function allow to predict species for new iris > don_pred

Sepal.Length Sepal.Width Petal.Length Petal.Width

5.0	3.6	1.4	0.2
5.5	2.4	3.7	1.0
7.1	3.0	5.9	2.1
6.7	3.3	5.7	2.5

Making predictions

- predict function allow to predict species for new iris > don_pred

Sepal.Length Sepal.Width Petal.Length Petal.Width

5.0	3.6	1.4	0.2
5.5	2.4	3.7	1.0
7.1	3.0	5.9	2.1
6.7	3.3	5.7	2.5

- We just have to enter

```
> predict(model_complet,newdata=don_pred)
$class
[1] setosa versicolor virginica virginica
Levels: setosa versicolor virginica
$posterior
    setosa versicolor virginica
5 1.000000e+00 1.637387e-22 1.082605e-42
82 9.648075e-16 9.999997e-01 3.266704e-07
103 1.231264e-42 2.592826e-05 9.999741e-01
145 4.048249e-46 2.524984e-07 9.999997e-01
```


Classification rule

- Reminder: LDA allows to estimate posterior probabilities:

$$
\mathbf{P}(Y=k \mid X=x)
$$

Classification rule

- Reminder: LDA allows to estimate posterior probabilities:

$$
\mathrm{P}(Y=k \mid X=x)
$$

- Classification rule: we choose the group which maximizes these probabilities
$\widehat{g}(x)=k \quad$ if and only if $\quad \mathbf{P}(Y=k \mid X=x) \geq \mathbf{P}(Y=j \mid X=x), \quad j \neq k$.
- Boundary between 2 groups: set of points x such that $\mathbf{P}(Y=k \mid X=x)=\mathbf{P}(Y=j \mid X=x)$.
- Or

$$
\begin{align*}
& \log \frac{\mathbf{P}(Y=k \mid X=x)}{\mathbf{P}(Y=\ell \mid X=x)}= \log \frac{f_{k}(x)}{f_{\ell}(x)}+\log \frac{\pi_{k}}{\pi_{\ell}} \\
&=\log \frac{\pi_{k}}{\pi_{\ell}}-\frac{1}{2}\left(\mu_{k}+\mu_{\ell}\right)^{t} \Sigma^{-1}\left(\mu_{k}-\mu_{\ell}\right) \\
&+x^{t} \Sigma^{-1}\left(\mu_{k}-\mu_{\ell}\right) \tag{1}
\end{align*}
$$

- Or

$$
\begin{align*}
\log \frac{\mathbf{P}(Y=k \mid X=x)}{\mathbf{P}(Y=\ell \mid X=x)}= & \log \frac{f_{k}(x)}{f_{\ell}(x)}+\log \frac{\pi_{k}}{\pi_{\ell}} \\
=\log & \frac{\pi_{k}}{\pi_{\ell}}-\frac{1}{2}\left(\mu_{k}+\mu_{\ell}\right)^{t} \Sigma^{-1}\left(\mu_{k}-\mu_{\ell}\right) \\
& +x^{t} \Sigma^{-1}\left(\mu_{k}-\mu_{\ell}\right) \tag{1}
\end{align*}
$$

Conclusion

Bondary between 2 groups is linear!

Example

- Boundary between "Setosa" and "Versicolor" for 2 variables.

```
> iris1 <- iris[iris$Species%in%c("setosa","versicolor"),c(3,2,5)]
> ggplot(iris1)+aes(x=Petal.Length,y=Sepal.Width,color=Species)+geom_point()
```


Boundary two classes

Example - 3 labels

- We do the same for the 3 species (3 classes).

```
> ggplot(iris)+aes(x=Petal.Length,y=Sepal.Width,color=Species)+geom_point()
```


Boundaries

Linear discriminant functions

Definition

Linear discriminant functions are defined by

$$
\delta_{k}(x)=x^{t} \Sigma^{-1} \mu_{k}-\frac{1}{2} \mu_{k}^{t} \Sigma^{-1} \mu_{k}+\log \pi_{k}, \quad k=1, \ldots, K .
$$

Linear discriminant functions

Definition

Linear discriminant functions are defined by

$$
\delta_{k}(x)=x^{t} \Sigma^{-1} \mu_{k}-\frac{1}{2} \mu_{k}^{t} \Sigma^{-1} \mu_{k}+\log \pi_{k}, \quad k=1, \ldots, K .
$$

Propriété

Thanks to (1), we deduce

$$
\underset{k}{\operatorname{argmax}} \mathbf{P}(Y=k \mid X=x)=\underset{k}{\operatorname{argmax}} \delta_{k}(x) .
$$

Linear discriminant functions

Definition

Linear discriminant functions are defined by

$$
\delta_{k}(x)=x^{t} \Sigma^{-1} \mu_{k}-\frac{1}{2} \mu_{k}^{t} \Sigma^{-1} \mu_{k}+\log \pi_{k}, \quad k=1, \ldots, K .
$$

Propriété

Thanks to (1), we deduce

$$
\underset{k}{\operatorname{argmax}} \mathbf{P}(Y=k \mid X=x)=\underset{k}{\operatorname{argmax}} \delta_{k}(x) .
$$

Conclusion

Maximising posterior probabilities is similar to maximising linear discriminant functions.

Outline

Some parametric methods

Linear and logistic models

Linear discriminant analysis
Just one explanatory variable
LDA: general case
2. Some nonparametric methods

Kernel and nearest neighbors methods
The curse of dimensionality
3. Empirical risk minimization

Setting
Caret package
4. Bibliography

Local averaging

Idea

- Parametric models require strong assumptions on the function to estimate.
- Nonparametric approaches try to be less restrictive.

Local averaging

Idea

- Parametric models require strong assumptions on the function to estimate.
- Nonparametric approaches try to be less restrictive.
- These methods consists of studying the data on a neighborhood of the points where we want to estimate the target function.

Local averaging

Idea

- Parametric models require strong assumptions on the function to estimate.
- Nonparametric approaches try to be less restrictive.
- These methods consists of studying the data on a neighborhood of the points where we want to estimate the target function.
- For both regression and supervised classification, nonparametric approaches rely on local averaging:

$$
\widehat{f}_{n}(x)=\sum_{i=1}^{n} W_{n i}(x) Y_{i}
$$

where the weights $W_{n i}$ depend on the algorithm.

- $W_{n i}$ large if X_{i} is closed to x.

Outline

Some parametric methods

Linear and logistic models
Linear discriminant analysis
Just one explanatory variable
LDA: general case
2. Some nonparametric methods

Kernel and nearest neighbors methods
The curse of dimensionality
3. Empirical risk minimization

Setting
Caret package
4. Bibliography

Kernel estimate

- $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. with the same law as (X, Y).
- Goal: estimate $m^{\star}(x)=\mathrm{E}[Y \mid X=x]$.

Kernel estimate

- $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. with the same law as (X, Y).
- Goal: estimate $m^{\star}(x)=\mathrm{E}[Y \mid X=x]$.

Kernel estimate

- $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. with the same law as (X, Y).
- Goal: estimate $m^{\star}(x)=\mathrm{E}[Y \mid X=x]$.

Kernel estimate

- $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. with the same law as (X, Y).
- Goal: estimate $m^{\star}(x)=\mathrm{E}[Y \mid X=x]$.

- The estimator

$$
\widehat{m}_{n}(x)=\operatorname{Average}\left(Y_{i}: X_{i} \in[x-h, x+h]\right)=\frac{\sum_{i=1}^{n} \mathbf{1}_{x-h \leq X_{i} \leq x+h} Y_{i}}{\sum_{i=1}^{n} \mathbf{1}_{x-h \leq X_{i} \leq x+h}}
$$

- The estimator

$$
\widehat{m}_{n}(x)=\operatorname{Average}\left(Y_{i}: X_{i} \in[x-h, x+h]\right)=\frac{\sum_{i=1}^{n} \mathbf{1}_{x-h \leq X_{i} \leq x+h} Y_{i}}{\sum_{i=1}^{n} \mathbf{1}_{x-h \leq X_{i} \leq x+h}}
$$

Definition

Let $h>0$ and $K: \mathcal{X} \rightarrow \mathbb{R}^{+}$. The kernel estimate with bandwidth h and kernel K is defined by

$$
\widehat{m}_{n}(x)=\frac{\sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right) Y_{i}}{\sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right)}
$$

Choice of the bandwidth

- Usual kernels when $\mathcal{X}=\mathbb{R}^{d}$:

1. Uniform: $K(x)=\mathbf{1}_{\|x\| \leq 1}$;
2. Gaussian: $K(x)=\exp \left(-\|x\|^{2}\right)$;
3. Epanechnikov: $K(x)=\frac{3}{4}\left(1-\|x\|^{2}\right) \mathbf{1}_{\|x\| \leq 1}$.
\Longrightarrow provide weights according to the distance of x.

Choice of the bandwidth

- Usual kernels when $\mathcal{X}=\mathbb{R}^{d}$:

1. Uniform: $K(x)=\mathbf{1}_{\|x\| \leq 1}$;
2. Gaussian: $K(x)=\exp \left(-\|x\|^{2}\right)$;
3. Epanechnikov: $K(x)=\frac{3}{4}\left(1-\|x\|^{2}\right) \mathbf{1}_{\|x\| \leq 1}$.
\Longrightarrow provide weights according to the distance of x.

- The choice of the bandwidth h reveals crucial for the performance of the estimate:

1. h large:

Choice of the bandwidth

- Usual kernels when $\mathcal{X}=\mathbb{R}^{d}$:

1. Uniform: $K(x)=\mathbf{1}_{\|x\| \leq 1}$;
2. Gaussian: $K(x)=\exp \left(-\|x\|^{2}\right)$;
3. Epanechnikov: $K(x)=\frac{3}{4}\left(1-\|x\|^{2}\right) \mathbf{1}_{\|x\| \leq 1}$.
\Longrightarrow provide weights according to the distance of x.

- The choice of the bandwidth h reveals crucial for the performance of the estimate:

1. h large: steady estimator, low variance, large bias;
2. h small:

Choice of the bandwidth

- Usual kernels when $\mathcal{X}=\mathbb{R}^{d}$:

1. Uniform: $K(x)=\mathbf{1}_{\|x\| \leq 1}$;
2. Gaussian: $K(x)=\exp \left(-\|x\|^{2}\right)$;
3. Epanechnikov: $K(x)=\frac{3}{4}\left(1-\|x\|^{2}\right) \mathbf{1}_{\|x\| \leq 1}$.
\Longrightarrow provide weights according to the distance of x.

- The choice of the bandwidth h reveals crucial for the performance of the estimate:

1. h large: steady estimator, low variance, large bias;
2. h small: unsteady estimator ("overfitting"), large variance, small bias.

Conclusion

h governs the complexity of the estimate.

Example

- We generate data $\left(X_{i}, Y_{i}\right), i=1, \ldots, n=200$ according to the model

$$
Y_{i}=\sin \left(X_{i}\right)+\varepsilon_{i}, \quad i=1, \ldots, n
$$

where X_{i} has a uniform distribution on $[-2 \pi, 2 \pi], \varepsilon_{i}$ has a Gaussian distribution $\mathcal{N}\left(0,0.2^{2}\right)$.

```
> n <- 200; set.seed(1234)
> X <- runif(n,-2*pi,2*pi)
> set.seed(5678)
> eps <- rnorm(n,0,0.2)
> Y <- sin(X)+eps
> df <- data.frame(X=X,Y=Y)
> x <- seq(-2*pi, 2*pi,by=0.01)
> df1 <- data.frame(x=x,y=sin(x))
> ggplot(df1)+aes(x=x,y=y)+
    geom_line(size=1)+
    geom_point(data=df, aes (x=X, y=Y))
```


- locpoly function from kernSmooth package allows to fit kernel estimates.

```
> h1 <- 0.5;h2 <- 3;h3 <- 0.01
> fx1 <-locpoly(X,Y,bandwidth=h1)
> fx2 <-locpoly(X,Y,bandwidth=h2)
> fx3 <-locpoly(X,Y,bandwidth=h3)
> df1 <- data.frame(x=x,y=sin(x))
> df2 <- data.frame(x=fx1$x,
        "HO.5"=fx1$y,"H3"=fx2$y,
        "H0.01"=fx3$y)
> df22 <- melt(df2,id.vars=1)
> names(df22)[2:3] <- c("fenêtre",
        "y")
> ggplot(df22)+aes(x=x,y=y)+
        geom_line(aes(color=fenêtre,
        lty=fenêtre))+geom_line
        (data=df1, aes (x=x, y=y),size=1)
```


- locpoly function from kernSmooth package allows to fit kernel estimates.

```
> h1 <- 0.5;h2 <- 3;h3 <- 0.01
> fx1 <-locpoly(X,Y,bandwidth=h1)
> fx2 <-locpoly(X,Y,bandwidth=h2)
> fx3 <-locpoly(X,Y,bandwidth=h3)
> df1 <- data.frame(x=x,y=sin(x))
> df2 <- data.frame(x=fx1$x,
        "HO.5"=fx1$y,"H3"=fx2$y,
        "H0.01"=fx3$y)
> df22 <- melt(df2,id.vars=1)
> names(df22)[2:3] <- c("fenêtre",
        "y")
> ggplot(df22)+aes(x=x,y=y)+
        geom_line(aes(color=fenêtre,
        lty=fenêtre))+geom_line
        (data=df1, aes (x=x, y=y),size=1)
```

- Exercise 4-IML1.

Nearest neighbors algorithm

Definition

Let $k \leq n$ an integer. The k-nearest neighbors estimate is defined by

$$
\hat{m}_{n}(x)=\frac{1}{k} \sum_{i \in \operatorname{knn}(x)} Y_{i}
$$

where for $x \in \mathcal{X}$
$\operatorname{knn}(x)=\left\{i: X_{i}\right.$ is among the knn of x among $\left.\left\{X_{1}, \ldots, X_{n}\right\}\right\}$.

Nearest neighbors algorithm

Definition

Let $k \leq n$ an integer. The k-nearest neighbors estimate is defined by

$$
\hat{m}_{n}(x)=\frac{1}{k} \sum_{i \in \operatorname{knn}(x)} Y_{i}
$$

where for $x \in \mathcal{X}$

$$
\operatorname{knn}(x)=\left\{i: X_{i} \text { is among the knn of } x \text { among }\left\{X_{1}, \ldots, X_{n}\right\}\right\}
$$

Remark

Once again, k reveals crucial for the performance of the estimate:

1. k large: steady estimate, low variance, high bias;
2. k small: "overfitting", large variance, small bias.

Nearest neighbors algorithm

Definition

Let $k \leq n$ an integer. The k-nearest neighbors estimate is defined by

$$
\hat{m}_{n}(x)=\frac{1}{k} \sum_{i \in \operatorname{knn}(x)} Y_{i}
$$

where for $x \in \mathcal{X}$

$$
\operatorname{knn}(x)=\left\{i: X_{i} \text { is among the knn of } x \text { among }\left\{X_{1}, \ldots, X_{n}\right\}\right\}
$$

Remark

Once again, k reveals crucial for the performance of the estimate:

1. k large: steady estimate, low variance, high bias;
2. k small: "overfitting", large variance, small bias.
$\Longrightarrow k$ governs the complexity of the model.

Example

- knn.reg function from FNN package allows to fit k-nearest neighbors estimate.

```
> k1 <- 10; k2 <- 100; k3 <- 1
> fx1 <- knn.reg(X,as.matrix(x),y=Y,k=k1)
> fx2 <- knn.reg(X,as.matrix(x),y=Y,k=k2)
> fx3 <- knn.reg(X,as.matrix(x),y=Y,k=k3)
> df1 <- data.frame(x=x,y=sin(x))
> df2 <- data.frame(x=x,"K10"=fx1$pred,
    "K100"=fx2$pred, "K1"=fx3$pred)
> df22 <- melt(df2,id.vars=1)
> names(df22)[2:3] <- c("KNN","y")
>ggplot(df22)+aes(x=x,y=y)+
    geom_line(aes(color=KNN,lty=KNN))+
    geom_line(data=df1, aes(x=x,y=y),size=1)
```


Supervised classification

- Kernel and nearest neighbors estimates have been presented in regression $(\mathcal{Y}=\mathbb{R})$.
- Approaches are similar in supervised classification:

1. neighborhoods are defined in the same way;
2. (only) change:

Supervised classification

- Kernel and nearest neighbors estimates have been presented in regression $(\mathcal{Y}=\mathbb{R})$.
- Approaches are similar in supervised classification:

1. neighborhoods are defined in the same way;
2. (only) change: instead of averaging the Y_{i} in a neighborhood of x, we make a majority vote.

Kernel for supervised classification

k-nn for supervised classification

The k-nn rule

- Let $k \leq n$, the k-nn rule apply a majority vote to assess the group of new individuals:

$$
\hat{g}_{n}(x)=M V\left(Y_{i}: i \in k n n(x)\right)=\underset{k \in \mathcal{Y}}{\operatorname{argmax}} \sum_{i \in \operatorname{knn}(x)} 1_{Y_{i}=k}
$$

where $\operatorname{knn}(x)=\left\{i: X_{i}\right.$ is among the knn of x among $\left.\left\{X_{1}, \ldots, X_{n}\right\}\right\}$.

The k-nn rule

- Let $k \leq n$, the k-nn rule apply a majority vote to assess the group of new individuals:

$$
\hat{g}_{n}(x)=M V\left(Y_{i}: i \in k n n(x)\right)=\underset{k \in \mathcal{Y}}{\operatorname{argmax}} \sum_{i \in \operatorname{knn}(x)} 1_{Y_{i}=k}
$$

where $\operatorname{knn}(x)=\left\{i: X_{i}\right.$ is among the knn of x among $\left.\left\{X_{1}, \ldots, X_{n}\right\}\right\}$.

Remark

As for regression, the choice of k reveals crucial for the performance of the estimate:

1. k large: "steady" estimate, small variance, large bias;
2. k small: "overfitting", large variance, small bias.

Example

- Goal: explain a binary variable Y by 2 continuous variables X_{1} and X_{2}. We have $n=2000$ observations.

k-nn rules

k-nn rules

Conclusion

We clearly visualize how the choice of k is important.

Consistency [Györfi et al., 2002]

- For both regression and supervised classification, kernel rules and nearest neighbors rules are universally consistant (under weak assumptions).

Theorem [Stone, 1977]

If $k \rightarrow \infty$ and $k / n \rightarrow 0$, then the k-nn rule is universally consistant.

Consistency [Györfi et al., 2002]

- For both regression and supervised classification, kernel rules and nearest neighbors rules are universally consistant (under weak assumptions).

Theorem [Stone, 1977]

If $k \rightarrow \infty$ and $k / n \rightarrow 0$, then the k-nn rule is universally consistant.

Theorem [Devroye and Krzyżak, 1989]
If $h \rightarrow 0$ and $n h^{d} \rightarrow+\infty$, then the kernel rule universally consistant.

Outline

Some parametric methods

Linear and logistic models
Linear discriminant analysis
Just one explanatory variable
LDA: general case
2. Some nonparametric methods

Kernel and nearest neighbors methods
The curse of dimensionality
3. Empirical risk minimization

Setting

Caret package
4. Bibliography

Rate of consistency [Györfi et al., 2002]

Nonparametric methods (always) suffer from the curse of dimensionality: as the dimension d increases, we have less and less observations in the neighborhoods of $x \Longrightarrow$

Rate of consistency [Györfi et al., 2002]

Nonparametric methods (always) suffer from the curse of dimensionality: as the dimension d increases, we have less and less observations in the neighborhoods of $x \Longrightarrow$ less and less accurate \Longrightarrow

Rate of consistency [Györfi et al., 2002]

Nonparametric methods (always) suffer from the curse of dimensionality: as the dimension d increases, we have less and less observations in the neighborhoods of $x \Longrightarrow$ less and less accurate \Longrightarrow slower convergence rate.

Rate of consistency [Györfi et al., 2002]

Nonparametric methods (always) suffer from the curse of dimensionality: as the dimension d increases, we have less and less observations in the neighborhoods of $x \Longrightarrow$ less and less accurate \Longrightarrow slower convergence rate.

Theorem

We consider the regression problem (explain Y by X_{1}, \ldots, X_{d}) and denote by m_{n} the k-nn estimate. Under technical assumptions, the quadratic risk of m_{n} satisfies (see exercise 3 -IML0)

$$
\mathcal{R}\left(m_{n}\right)=\mathrm{O}\left(n^{-\frac{2}{d+2}}\right)
$$

Rate of consistency [Györfi et al., 2002]

Nonparametric methods (always) suffer from the curse of dimensionality: as the dimension d increases, we have less and less observations in the neighborhoods of $x \Longrightarrow$ less and less accurate \Longrightarrow slower convergence rate.

Theorem

We consider the regression problem (explain Y by X_{1}, \ldots, X_{d}) and denote by m_{n} the k-nn estimate. Under technical assumptions, the quadratic risk of m_{n} satisfies (see exercise 3 -IML0)

$$
\mathcal{R}\left(m_{n}\right)=\mathrm{O}\left(n^{-\frac{2}{d+2}}\right) .
$$

Consequence

- $d=1$: rate $n^{-2 / 3}, d=5$: rate $n^{-2 / 7}$.
- In practice, nonparametric estimates are not efficient in high dimensional spaces.

Curse of dimensionality (Illustration)

Outline

Some parametric methods
Linear and logistic models
Linear discriminant analysis
Just one explanatory variable
LDA: general case
2. Some nonparametric methods

Kernel and nearest neighbors methods
The curse of dimensionality
3. Empirical risk minimization

Setting
Caret package
4. Bibliography

Outline

Some parametric methods
Linear and logistic models
Linear discriminant analysis
Just one explanatory variable
LDA: general case
2. Some nonparametric methods

Kernel and nearest neighbors methods
The curse of dimensionality
3. Empirical risk minimization

Setting
Caret package
4. Bibliography

Choosing parameters

- Most of the machines depends on parameters.

Choosing parameters

- Most of the machines depends on parameters.

Rules	Parameters
k-nn	$k:$ number of neighbors
kernel	$h:$ bandwidth
trees	depth
boosting	number of iterations
\ldots	\ldots

Choosing parameters

- Most of the machines depends on parameters.

Rules	Parameters
k-nn	$k:$ number of neighbors
kernel	$h:$ bandwidth
trees	depth
boosting	number of iterations
\ldots	\ldots

- Selection of these parameters reveals crucial for the performances of the estimates.

Choosing parameters

- Most of the machines depends on parameters.

Rules	Parameters
k-nn	$k:$ number of neighbors
kernel	$h:$ bandwidth
trees	depth
boosting	number of iterations
\ldots	\ldots

- Selection of these parameters reveals crucial for the performances of the estimates.
- Goal:
- define procedures which allow to automatically select these parameters;
- establish theoretical guarantees for these procedures (GB lecture).

ERM strategy

Framework

- \mathcal{F} a collection of machines.
- Risk for a machine $f: \mathcal{R}(f)=\mathbf{E}[\ell(Y, f(X))]$.
- Goal: select \hat{f} in \mathcal{F} such that

$$
\mathcal{R}(\hat{f}) \approx \inf _{f \in \mathcal{F}} \mathcal{R}(f)
$$

ERM strategy

Framework

- \mathcal{F} a collection of machines.
- Risk for a machine $f: \mathcal{R}(f)=\mathbf{E}[\ell(Y, f(X))]$.
- Goal: select \hat{f} in \mathcal{F} such that

$$
\mathcal{R}(\hat{f}) \approx \inf _{f \in \mathcal{F}} \mathcal{R}(f)
$$

ERM

- Estimate the risk of the machines in \mathcal{F} (validation hold out, cross validation...) $\Longrightarrow \widehat{R}_{n}(f)$.
- Choose the machine \hat{f} which minimizes the estimated risk $\widehat{R}_{n}(f)$.

Selecting k (k-nn rule)

- Data splitting:
- A learning or train set $\mathcal{D}_{m}=\left\{\left(X_{1}, Y_{1}\right), \ldots,\left(X_{m}, Y_{m}\right)\right\}$;
- A test set $\mathcal{D}_{\ell}=\left\{\left(X_{m+1}, Y_{m+1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right\}$ with $m+\ell=n$.
- Candidates: $\mathcal{G}_{m}=\left\{g_{k}, 1 \leq k \leq m\right\} \rightarrow k$-nn rules using \mathcal{D}_{m}.
- Risk: $L(g)=\mathbf{P}(g(X) \neq Y)$.

Selecting k (k-nn rule)

- Data splitting:
- A learning or train set $\mathcal{D}_{m}=\left\{\left(X_{1}, Y_{1}\right), \ldots,\left(X_{m}, Y_{m}\right)\right\}$;
- A test set $\mathcal{D}_{\ell}=\left\{\left(X_{m+1}, Y_{m+1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right\}$ with $m+\ell=n$.
- Candidates: $\mathcal{G}_{m}=\left\{g_{k}, 1 \leq k \leq m\right\} \rightarrow k$-nn rules using \mathcal{D}_{m}.
- Risk: $L(g)=\mathrm{P}(g(X) \neq Y)$.

ERM Strategy

Choose \widehat{g}_{n} which minmizes

$$
\frac{1}{\ell} \sum_{i=m+1}^{n} 1_{g_{k}\left(X_{i}\right) \neq Y_{i}}
$$

Outline

Some parametric methods
Linear and logistic models
Linear discriminant analysis
Just one explanatory variable
LDA: general case
2. Some nonparametric methods

Kernel and nearest neighbors methods
The curse of dimensionality
3. Empirical risk minimization

Setting
Caret package
4. Bibliography

- Classification and regression training.
- This package allows to select machines and to estimate their performances.
- More than 230 algorithms are available on caret:
http://topepo.github.io/caret/index.html
- Classification and regression training.
- This package allows to select machines and to estimate their performances.
- More than 230 algorithms are available on caret:
http://topepo.github.io/caret/index.html
- We just have to specify:
- the method (logistic, k-nn, trees, randomForest...)
- a grid for the values of parameters (number of NN...)
- the risk or the cost function (error probability, AUC, quadratic risk...)
- how to estimate the risk (validation hold out, cross validation, bootstrap...).

Validation hold out i

```
> K_cand <- seq(1,500,by=20)
> library(caret)
> ctrl1 <- trainControl(method="LGOCV",number=1,index=list(1:1500))
> KK <- data.frame(k=K_cand)
> e1 <- train(Y~.,data=donnees,method="knn",trControl=ctrl1,tuneGrid=KK)
> e1
k-Nearest Neighbors
2000 samples
    2 predictor
    2 classes: '0', '1'
No pre-processing
Resampling: Repeated Train/Test Splits Estimated (1 reps, 75%)
Summary of sample sizes: 1500
Resampling results across tuning parameters:
    k Accuracy Kappa
```


Validation hold out ii

1	0.620	0.2382571
21	0.718	0.4342076
41	0.722	0.4418388
61	0.718	0.4344073
81	0.720	0.4383195
101	0.714	0.4263847
121	0.716	0.4304965
141	0.718	0.4348063
161	0.718	0.4348063
181	0.718	0.4348063
201	0.720	0.4387158
221	0.718	0.4350056
241	0.718	0.4350056
261	0.722	0.4428232
281	0.714	0.4267894
301	0.714	0.4269915
321	0.710	0.4183621
341	0.696	0.3893130

Validation hold out iii

361	0.696	0.3893130
381	0.690	0.3767090
401	0.684	0.3645329
421	0.686	0.3686666
441	0.686	0.3679956
461	0.684	0.3638574
481	0.680	0.3558050

Accuracy was used to select the optimal model using the largest value. The final value used for the model was $k=261$.
> plot(e1)

Validation hold out iv

Cross validation i

```
> library(doMC)
> registerDoMC(cores = 3)
> ctrl2 <- trainControl(method="cv",number=10)
> e2 <- train(Y~.,data=dapp,method="knn",trControl=ctrl2,tuneGrid=KK)
> e2
k-Nearest Neighbors
1500 samples
    2 predictor
    2 classes: '0', '1'
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 1350, 1350, 1350, 1350, 1350, 1350, ...
Resampling results across tuning parameters:
k Accuracy Kappa
```


Cross validation if

1	0.6280000	0.2519051
21	0.7333333	0.4623213
41	0.7273333	0.4503384
61	0.7360000	0.4682891
81	0.7353333	0.4673827
101	0.7313333	0.4596395
121	0.7306667	0.4584747
141	0.7366667	0.4703653
161	0.7340000	0.4654675
181	0.7306667	0.4585136
201	0.7313333	0.4597224
221	0.7333333	0.4638243
241	0.7333333	0.4637789
261	0.7306667	0.4581189
281	0.7320000	0.4604955
301	0.7246667	0.4452185
321	0.7166667	0.4283226
341	0.7120000	0.4183438

Cross validation iii

361	0.7086667	0.4109784
381	0.7093333	0.4121146
401	0.7093333	0.4117108
421	0.7066667	0.4057889
441	0.7066667	0.4047529
461	0.6940000	0.3782209
481	0.6886667	0.3662798

Accuracy was used to select the optimal model using the largest value. The final value used for the model was $k=141$.
> plot(e2)

Cross validation iv

Repeated cross-validation

> ctrl3 <- trainControl(method="repeatedcv", repeats=5, number=10)
> e3 <- train(Y~.,data=dapp,method="knn",trControl=ctrl3,tuneGrid=KK)
> e3
k-Nearest Neighbors

1500 samples
2 predictor
2 classes: '0', '1'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 1350, 1350, 1350, 1350, 1350, 1350, ...
Resampling results across tuning parameters:

k	Accuracy	Kappa
1	0.6222667	0.2416680
21	0.7352000	0.4661220

Repeated cross-validation if

41	0.7312000	0.4580125
61	0.7310667	0.4580882
81	0.7321333	0.4606022
101	0.7329333	0.4626718
121	0.7326667	0.4623496
141	0.7328000	0.4628236
161	0.7345333	0.4663240
181	0.7344000	0.4660110
201	0.7322667	0.4616271
221	0.7324000	0.4619926
241	0.7326667	0.4624912
261	0.7310667	0.4591799
281	0.7282667	0.4530797
301	0.7248000	0.4454653
321	0.7170667	0.4292033
341	0.7118667	0.4181330
361	0.7112000	0.4163210
381	0.7109333	0.4154893

Repeated cross-validation iif

401	0.7086667	0.4104291
421	0.7058667	0.4043432
441	0.7026667	0.3972028
461	0.6953333	0.3813444
481	0.6886667	0.3664347

Accuracy was used to select the optimal model using the largest value. The final value used for the model was $\mathrm{k}=21$.
> plot(e3)

Repeated cross-validation iv

Minimizing AUC i

```
> donnees1 <- donnees
> names(donnees1)[3] <- c("Class")
> levels(donnees1$Class) <- c("GO","G1")
> ctrl11 <- trainControl(method="LGOCV",number=1,index=list(1:1500),
    classProbs=TRUE, summary=twoClassSummary)
> e4 <- train(Class~.,data=donnees1,method="knn",trControl=ctrl11,
                        metric="ROC",tuneGrid=KK)
> e4
k-Nearest Neighbors
2000 samples
    2 predictor
    2 classes: 'GO', 'G1'
No pre-processing
Resampling: Repeated Train/Test Splits Estimated (1 reps, 75%)
Summary of sample sizes: 1500
```


Minimizing AUC ii

Resampling results across tuning parameters:

k	ROC	Sens	Spec
1	0.6190866	0.5983264	0.6398467
21	0.7171484	0.6903766	0.7432950
41	0.7229757	0.6861925	0.7547893
61	0.7200500	0.6945607	0.7394636
81	0.7255567	0.6945607	0.7432950
101	0.7319450	0.6903766	0.7356322
121	0.7382452	0.6945607	0.7356322
141	0.7353757	0.7029289	0.7318008
161	0.7308549	0.7029289	0.7318008
181	0.7351272	0.7029289	0.7318008
201	0.7340050	0.7029289	0.7356322
221	0.7324099	0.7071130	0.7279693
241	0.7349028	0.7071130	0.7279693
261	0.7365780	0.7071130	0.7356322
281	0.7349749	0.6987448	0.7279693

Minimizing AUC iii

301	0.7356963	0.7029289	0.7241379
321	0.7341493	0.6861925	0.7318008
341	0.7343898	0.6527197	0.7356322
361	0.7306385	0.6527197	0.7356322
381	0.7301816	0.6359833	0.7394636
401	0.7270957	0.6276151	0.7356322
421	0.7255487	0.6317992	0.7356322
441	0.7258933	0.6192469	0.7471264
461	0.7220619	0.6150628	0.7471264
481	0.7236330	0.6108787	0.7432950

ROC was used to select the optimal model using the largest value. The final value used for the model was $\mathrm{k}=121$.
> getTrainPerf(e4)
TrainROC TrainSens TrainSpec method
10.73824520 .69456070 .7356322 knn
> plot(e4)

Minimizing AUC iv

Summary

- Parametric: strong assumption but fast rates $(1 / n)$.
- Non parametric: less restrictive but slow rates plus curse of dimensionality $\left(1 / n^{2 /(d+2)}\right)$.

Summary

- Parametric: strong assumption but fast rates $(1 / n)$.
- Non parametric: less restrictive but slow rates plus curse of dimensionality $\left(1 / n^{2 /(d+2)}\right)$.
- ERM strategy: select (automatically) parameters which minimizes the estimated risk.

Summary

- Parametric: strong assumption but fast rates $(1 / n)$.
- Non parametric: less restrictive but slow rates plus curse of dimensionality $\left(1 / n^{2 /(d+2)}\right)$.
- ERM strategy: select (automatically) parameters which minimizes the estimated risk.
- Exercise 5, IML1.

Outline

Some parametric methods
Linear and logistic models
Linear discriminant analysis
Just one explanatory variable
LDA: general case
2. Some nonparametric methods

Kernel and nearest neighbors methods
The curse of dimensionality
3. Empirical risk minimization

Setting
Caret package
4. Bibliography

References i

(19 Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and regression trees. Wadsworth \& Brooks.
Cornillon, P. and Matzner-Løber, E. (2011).
Régression avec R.
Springer.
Devroye, L., Györfi, L., and Lugosi, G. (1996).
A Probabilistic Theory of Pattern Recognition.
Springer.

References ii

Devroye, L. and Krzyżak, A. (1989).
An equivalence theorem for I_{1} convergence of the kernel regression estimate.
Journal of statistical Planning Inference, 23:71-82.
(Fahrmeir, L. and Kaufmann, H. (1985).
Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models.
The Annals of Statistics, 13:342-368.
EGrob, J. (2003).
Linear regression.
Springer.

References iii

Györfi, L., Kohler, M., Krzyzak, A., and Harro, W. (2002).
A Distribution-Free Theory of Nonparametric Regression.
Springer.
國 Hastie, T., Tibshirani, R., and Friedman, J. (2009).
The Elements of Statistical Learning: Data Mining, Inference, and Prediction.
Springer, second edition.
E Stone, C. J. (1977).
Consistent nonparametric regression.
Annals of Statistics, 5:595-645.

Part III

Linear model: variable selection and et regularization

Outline

1. Subset selection
2. Penalized regression

Ridge regression
Lasso regression
Supervised classification
3. Bibliography

Framework

- $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. observations with the same distribution as (X, Y) which takes values in $\mathcal{X} \times \mathcal{Y}$;
- In this part, we assume $\mathcal{X}=\mathbb{R}^{d}$ and $\mathcal{Y}=\mathbb{R}$ or $\{-1,1\}$.

Framework

- $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. observations with the same distribution as (X, Y) which takes values in $\mathcal{X} \times \mathcal{Y}$;
- In this part, we assume $\mathcal{X}=\mathbb{R}^{d}$ and $\mathcal{Y}=\mathbb{R}$ or $\{-1,1\}$.

Linear and logistic models

1. If $\mathcal{Y}=\mathbb{R}$,

$$
m(x)=\mathbf{E}[Y \mid X=x]=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{d} x_{d}=x^{t} \beta
$$

2. If $\mathcal{Y}=\{-1,1\}$,

$$
\operatorname{logit} p(x)=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{d} x_{d}=x^{t} \beta
$$

where $p(x)=\mathbf{P}(Y=1 \mid X=x)$.

Some limits

- 2 drawbacks in some situations:

Some limits

- 2 drawbacks in some situations:

1. prediction accuracy: LS and ML estimates can have large variance (especially when d is large) and thus poor prediction accuracy.

Some limits

- 2 drawbacks in some situations:

1. prediction accuracy: LS and ML estimates can have large variance (especially when d is large) and thus poor prediction accuracy.
2. interpretation: when d is large, we don't know what are the most important variables.

Some limits

- 2 drawbacks in some situations:

1. prediction accuracy: LS and ML estimates can have large variance (especially when d is large) and thus poor prediction accuracy.
2. interpretation: when d is large, we don't know what are the most important variables.

Goals

- Since we have more and more data, these drawbacks are occurring more and more often.
- We need to develop new automatic procedures to select important variables.

An example

- We generate observations $\left(x_{i}, y_{i}\right), i=1, \ldots, 500$ according to

$$
Y=1 X_{1}+0 X_{2}+\ldots+0 X_{q+1}+\varepsilon
$$

where $X_{2}, X_{q+1}, \ldots, \varepsilon$ are i.i.d. with law $\mathcal{N}(0,1)$.

An example

- We generate observations $\left(x_{i}, y_{i}\right), i=1, \ldots, 500$ according to

$$
Y=1 X_{1}+0 X_{2}+\ldots+0 X_{q+1}+\varepsilon
$$

where $X_{2}, X_{q+1}, \ldots, \varepsilon$ are i.i.d. with law $\mathcal{N}(0,1)$.

- We compute the LS estimator of β_{1} for 1000 replications. We draw boxplot of these estimators for $q=10$ and $q=400$.

An example

- We generate observations $\left(x_{i}, y_{i}\right), i=1, \ldots, 500$ according to

$$
Y=1 X_{1}+0 X_{2}+\ldots+0 X_{q+1}+\varepsilon
$$

where $X_{2}, X_{q+1}, \ldots, \varepsilon$ are i.i.d. with law $\mathcal{N}(0,1)$.

- We compute the LS estimator of β_{1} for 1000 replications. We draw boxplot of these estimators for $q=10$ and $q=400$.

Conclusion

Large variance (thus loss of accuracy) when the number of unnecessary variables increases.

Size of the model

Complexity (λ)

Size of the model

Conclusion

The size of the model governs the bias/variance trade-off.

Outline

1. Subset selection
2. Penalized regression

Ridge regression
Lasso regression
Supervised classification
3. Bibliography

Best subset selection

- $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. with the same law as (X, Y) which takes values in $\mathbb{R}^{d} \times \mathbb{R}$;
- d input variables \Longrightarrow

Best subset selection

- $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. with the same law as (X, Y) which takes values in $\mathbb{R}^{d} \times \mathbb{R}$;
- d input variables $\Longrightarrow 2^{d}$ candidate models.

Best subset selection

- $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. with the same law as (X, Y) which takes values in $\mathbb{R}^{d} \times \mathbb{R}$;
- d input variables $\Longrightarrow 2^{d}$ candidate models.

The idea

1. Fit the 2^{d} models;
2. Choose the one which optimizes a given criterion.

Best subset selection

- $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. with the same law as (X, Y) which takes values in $\mathbb{R}^{d} \times \mathbb{R}$;
- d input variables $\Longrightarrow 2^{d}$ candidate models.

The idea

1. Fit the 2^{d} models;
2. Choose the one which optimizes a given criterion.

Algorithm : best subset selection

1. for $k=0, \ldots, d$:
1.1 Fit the $\binom{d}{k}$ linear models with k variables;
1.2 Choose the model with the higher R^{2}. Denote \mathcal{M}_{k} this model.
2. Select, among $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{d}$, the best model according to a given criterion.

Some criteria

- AIC: Akaike Information Criterion

$$
-2 \mathcal{L}_{n}(\hat{\beta})+2 d
$$

- BIC: Bayesian Information Criterion

$$
-2 \mathcal{L}_{n}(\hat{\beta})+\log (n) d
$$

- Adjusted R^{2} :

$$
R_{a}^{2}=1-\frac{n-1}{n-d+1}\left(1-R^{2}\right) \quad \text { where } \quad R^{2}=\frac{S S R}{S S T}=\frac{\|\hat{\mathbb{Y}}-\overline{\mathbb{Y}} 1\|^{2}}{\|\mathbb{Y}-\overline{\mathbb{Y}} 1\|^{2}}
$$

- Mallows's C_{p} :

$$
C_{p}=\frac{1}{n}\left(\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}+2 d \hat{\sigma}^{2}\right)
$$

R user

- regsubsets from leaps package allows to make best subset selection.

```
> library(leaps)
> reg.fit <- regsubsets(V4~V5+V6+V7+V8+V9+V10+V11+V12+V13,data=Ozone)
> summary(reg.fit)
1 subsets of each size up to 8
Selection Algorithm: exhaustive
V5 V6 V7 V8 V9 V10 V11 V12 V13
1 ( 1 ) " " " " " " "*" " " " " " " " " " "
2 ( 1 ) " " " " "*" " " "*" " " " " " " " "
3 ( 1 ) " " " " "*" " " "*" "*" " " " " " "
4 ( 1 ) " " " " "*" "*" "*" "*" " " " " " "
5 ( 1 ) "*" " " "*" "*" "*" "*" " " " " " "
6 ( 1 ) "*" " " "*" "*" "*" "*" " " "*" " "
7 ( 1 ) "*" " " "*" "*" "*" "*" " " "*" "*"
8 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*"
```

> plot(reg.fit,scale="Cp")
> plot(reg.fit,scale="bic")

> plot(reg.fit,scale="Cp")
> plot(reg.fit,scale="bic")

- Mallows's C_{p} selects:

$$
Y=\beta_{0}+\beta_{1} V_{5}+\beta_{2} V_{7}+\beta_{3} V_{8}+\beta_{4} V_{9}+\beta_{5} V_{10}+\beta_{6} V_{12}+\varepsilon
$$

- BIC selects:

$$
Y=\beta_{0}+\beta_{1} V_{5}+\beta_{2} V_{7}+\beta_{3} V_{8}+\beta_{4} V_{9}+\beta_{5} V_{10}+\varepsilon
$$

Stepwise selection

- BSS considers all models (advantage).

Stepwise selection

- BSS considers all models (advantage).
- Drawback: it becomes infeasible (too long computational time) when d is large $(d \geq 40)$.

Stepwise selection

- BSS considers all models (advantage).
- Drawback: it becomes infeasible (too long computational time) when d is large $(d \geq 40)$.
- When d is large, we can seek a good path through all possible subsets.

Stepwise selection

- BSS considers all models (advantage).
- Drawback: it becomes infeasible (too long computational time) when d is large $(d \geq 40)$.
- When d is large, we can seek a good path through all possible subsets.
- Stepwise selection procedures define recursive models by adding or deleting one variable at each step.

1. Let \mathcal{M}_{0} the null model (only the intercept);
2. for $k=0, \ldots, d-1$:
2.1 Define the $d-k$ models by adding one variable in \mathcal{M}_{k};
2.2 Choose, among those $d-k$ models, the one which maximizes the R^{2}. Denote \mathcal{M}_{k+1} this model.
3. Select, among $\mathcal{M}_{0}, \ldots, \mathcal{M}_{d}$, the best model according to a given criterion.
4. Let \mathcal{M}_{0} the null model (only the intercept);
5. for $k=0, \ldots, d-1$:
2.1 Define the $d-k$ models by adding one variable in \mathcal{M}_{k};
2.2 Choose, among those $d-k$ models, the one which maximizes the R^{2}. Denote \mathcal{M}_{k+1} this model.
6. Select, among $\mathcal{M}_{0}, \ldots, \mathcal{M}_{d}$, the best model according to a given criterion.

Backward stepwise selection

1. Let \mathcal{M}_{d} the full model (d variables);
2. For $k=d, \ldots, 1$:
2.1 Define the k models by deleting one variable in \mathcal{M}_{k};
2.2 Choose, among those k models, the one which maximizes R^{2}. Denote \mathcal{M}_{k-1} this model.
3. Select, among $\mathcal{M}_{0}, \ldots, \mathcal{M}_{d}$, the best model according to a given criterion.

R user

- We just have to add the argument method="forward" or method="backward" in regsubsets to make subset selection.

```
> reg.fit.for <- regsubsets(V4~V5+V6+V7+V8+V9+V10+V11+V12+V13, data=Ozone,
        method="forward")
> reg.fit.back <- regsubsets(V4~V5+V6+V7+V8+V9+V10+V11+V12+V13,data=Ozone,
    method="backward")
```

> summary(reg.fit.for)


```
> summary(reg.fit.back)
```


> plot(reg.fit.for,scale="bic")
> plot(reg.fit.back,scale="bic")

Remark

For this example, forward and backward selection provide the same model (it's not always the case).

Binary classification

- Best subset and stepwise selection have been proposed for regression $(\mathcal{Y}=\mathbb{R})$.

Binary classification

- Best subset and stepwise selection have been proposed for regression $(\mathcal{Y}=\mathbb{R})$.
- These approaches are exactly the same for binary classification $(\mathcal{Y}=\{-1,1\})$.
- With R, we can use:
- bestglm function from the bestglm package for best subset selection.
- step function for stepwise selection.

Binary classification

- Best subset and stepwise selection have been proposed for regression $(\mathcal{Y}=\mathbb{R})$.
- These approaches are exactly the same for binary classification $(\mathcal{Y}=\{-1,1\})$.
- With R, we can use:
- bestglm function from the bestglm package for best subset selection.
- step function for stepwise selection.
- Exercise 1-2, IML2.

Outline

1. Subset selection

2. Penalized regression

Ridge regression
Lasso regression
Supervised classification

- For large values of d, least square estimates in the linear model

$$
Y=\beta_{1} X_{1}+\ldots+\beta_{d} X_{d}+\varepsilon
$$

often exhibits high variance (overfitting).

- For large values of d, least square estimates in the linear model

$$
Y=\beta_{1} X_{1}+\ldots+\beta_{d} X_{d}+\varepsilon
$$

often exhibits high variance (overfitting).

Penalized regression: the idea

- Constraint the values of the LS estimates to reduce the variance (even if we increase the bias).
- For large values of d, least square estimates in the linear model

$$
Y=\beta_{1} X_{1}+\ldots+\beta_{d} X_{d}+\varepsilon
$$

often exhibits high variance (overfitting).

Penalized regression: the idea

- Constraint the values of the LS estimates to reduce the variance (even if we increase the bias).
- How? By imposing a constraint on the size of the coefficients:

$$
\hat{\beta}^{\text {pen }}=\underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{d} x_{i j} \beta_{j}\right)^{2}
$$

- For large values of d, least square estimates in the linear model

$$
Y=\beta_{1} X_{1}+\ldots+\beta_{d} X_{d}+\varepsilon
$$

often exhibits high variance (overfitting).

Penalized regression: the idea

- Constraint the values of the LS estimates to reduce the variance (even if we increase the bias).
- How? By imposing a constraint on the size of the coefficients:

$$
\begin{aligned}
\hat{\beta}^{\text {pen }}= & \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{d} x_{i j} \beta_{j}\right)^{2} \\
& \text { subject to }\|\beta\|_{?} \leq t
\end{aligned}
$$

Questions

- Which norm for the constraint?

Questions

- Which norm for the constraint?
- How should we select t ?
- t small \Longrightarrow

Questions

- Which norm for the constraint?
- How should we select t ?
- t small \Longrightarrow strong constraint $\left(\hat{\beta}_{j} \approx 0\right)$;
- t large \Longrightarrow small constraint $\left(\hat{\beta}_{j} \approx \hat{\beta}_{j, L S}\right)$.

Outline

1. Subset selection

2. Penalized regression

Ridge regression
Lasso regression
Supervised classification
3. Bibliography

- Ridge regression shrinks the regression coefficients by constraining the euclidean norm of the parameters.
- Ridge regression shrinks the regression coefficients by constraining the euclidean norm of the parameters.

Definition

1. Ridge estimates $\hat{\beta}^{R}$ minimize

$$
\begin{equation*}
\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{d} x_{i j} \beta_{j}\right)^{2} \quad \text { subject to } \quad \sum_{j=1}^{d} \beta_{j}^{2} \leq t \tag{2}
\end{equation*}
$$

- Ridge regression shrinks the regression coefficients by constraining the euclidean norm of the parameters.

Definition

1. Ridge estimates $\hat{\beta}^{R}$ minimize

$$
\begin{equation*}
\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{d} x_{i j} \beta_{j}\right)^{2} \quad \text { subject to } \quad \sum_{j=1}^{d} \beta_{j}^{2} \leq t \tag{2}
\end{equation*}
$$

2. or equivalently by imposing a penalty on the size of the coefficients

$$
\begin{equation*}
\hat{\beta}^{R}=\underset{\beta}{\operatorname{argmin}}\left\{\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{d} x_{i j} \beta_{j}\right)^{2}+\lambda \sum_{j=1}^{d} \beta_{j}^{2}\right\} . \tag{3}
\end{equation*}
$$

Some remarks

- (2) are (3) the same in the sense that there is a one-to-one correspondence between t and λ.

Some remarks

- (2) are (3) the same in the sense that there is a one-to-one correspondence between t and λ.
- Ridge estimate depends on t (or $\lambda): \hat{\beta}^{R}=\hat{\beta}^{R}(t)=\hat{\beta}^{R}(\lambda)$.

Some remarks

- (2) are (3) the same in the sense that there is a one-to-one correspondence between t and λ.
- Ridge estimate depends on t (or $\lambda): \hat{\beta}^{R}=\hat{\beta}^{R}(t)=\hat{\beta}^{R}(\lambda)$.
- Input variables are generally standardized to make the variables at the same scale (it is automatic in classical softwares).

An example

- The problem: explain the level of prostate specific antigen by a number (8) of clinical measures.
- $n=100$ data available at
https://web.stanford.edu/~hastie/ElemStatLearn/

An example

- The problem: explain the level of prostate specific antigen by a number (8) of clinical measures.
- $n=100$ data available at
https://web.stanford.edu/~hastie/ElemStatLearn/
- Package glmnet allows to make ridge regression on R .

UseR

```
> reg.ridge <- glmnet(prostate.data2[,2:9],prostate.data2[,10],alpha=0)
> plot(reg.ridge,label=TRUE)
> plot(reg.ridge,xvar="lambda",label=TRUE,lwd=2)
```


Some properties of ridge estimates

Proposition

1. Solution of (3) is given by

$$
\hat{\beta}^{R}=\hat{\beta}^{R}(\lambda)=\left(\mathbb{X}^{t} \mathbb{X}+\lambda \mathbb{I}\right)^{-1} \mathbb{X}^{t} \mathbb{Y}
$$

2. It follows that

$$
\operatorname{bias}\left(\hat{\beta}^{R}\right)=-\lambda\left(\mathbb{X}^{t} \mathbb{X}+\lambda \mathbb{I}\right)^{-1} \beta
$$

and

$$
\mathbf{V}\left(\hat{\beta}^{R}\right)=\sigma^{2}\left(\mathbb{X}^{t} \mathbb{X}+\lambda \mathbb{I}\right)^{-1} \mathbb{X}^{t} \mathbb{X}\left(\mathbb{X}^{t} \mathbb{X}+\lambda \mathbb{I}\right)^{-1}
$$

Some properties of ridge estimates

Proposition

1. Solution of (3) is given by

$$
\hat{\beta}^{R}=\hat{\beta}^{R}(\lambda)=\left(\mathbb{X}^{t} \mathbb{X}+\lambda \mathbb{I}\right)^{-1} \mathbb{X}^{t} \mathbb{Y}
$$

2. It follows that

$$
\operatorname{bias}\left(\hat{\beta}^{R}\right)=-\lambda\left(\mathbb{X}^{t} \mathbb{X}+\lambda \mathbb{I}\right)^{-1} \beta
$$

and

$$
\mathbf{V}\left(\hat{\beta}^{R}\right)=\sigma^{2}\left(\mathbb{X}^{t} \mathbb{X}+\lambda \mathbb{I}\right)^{-1} \mathbb{X}^{t} \mathbb{X}\left(\mathbb{X}^{t} \mathbb{X}+\lambda \mathbb{I}\right)^{-1}
$$

Remarks

- For $\lambda=0$, we obtain LS estimates.
- $\lambda \nearrow \Longrightarrow$ bias \nearrow and variance \searrow and conversely as $\lambda \searrow$.

Choice of λ

- This choice of λ reveals crucial for the performance: if $\lambda \approx 0$ then $\hat{\beta}^{R} \approx \hat{\beta}^{M C O}$, if λ "large" then $\hat{\beta}^{R} \approx 0$.

Choice of λ

- This choice of λ reveals crucial for the performance: if $\lambda \approx 0$ then $\hat{\beta}^{R} \approx \hat{\beta}^{M C O}$, if λ "large" then $\hat{\beta}^{R} \approx 0$.
- The procedure to select λ is usual:

1. Estimation of a criterion for a grid of λ;

Choice of λ

- This choice of λ reveals crucial for the performance: if $\lambda \approx 0$ then $\hat{\beta}^{R} \approx \hat{\beta}^{M C O}$, if λ "large" then $\hat{\beta}^{R} \approx 0$.
- The procedure to select λ is usual:

1. Estimation of a criterion for a grid of λ;
2. We choose the value of λ which minimizes the estimated criterion.

Choice of λ

- This choice of λ reveals crucial for the performance: if $\lambda \approx 0$ then $\hat{\beta}^{R} \approx \hat{\beta}^{M C O}$, if λ "large" then $\hat{\beta}^{R} \approx 0$.
- The procedure to select λ is usual:

1. Estimation of a criterion for a grid of λ;
2. We choose the value of λ which minimizes the estimated criterion.

- Example: cv.glmnet selects the value of λ which minimizes the quadratic risk:

$$
\mathrm{E}\left[\left(Y-X^{t} \hat{\beta}^{R}(\lambda)\right)^{2}\right]
$$

estimated by cross validation.
> reg.cvridge <- cv.glmnet(prostate.data2[,2:9], prostate.data2[,10], alpha=0)
> bestlam <- reg.cvridge\$lambda.min
> bestlam
[1] 0.1060069
> plot(reg.cvridge)

Outline

1. Subset selection

2. Penalized regression

Ridge regression
Lasso regression Supervised classification
3. Bibliography

- Lasso regression shrinks the regression coefficients by constraining the L_{1} norm of the parameters.
- Lasso regression shrinks the regression coefficients by constraining the L_{1} norm of the parameters.

Definition [Tibshirani, 1996]

1. Lasso estimates $\hat{\beta}^{L}$ minimize

$$
\begin{equation*}
\sum_{i=1}^{n}\left(Y_{i}-\beta_{0}-\sum_{j=1}^{d} X_{i j} \beta_{j}\right)^{2} \quad \text { subject to } \quad \sum_{j=1}^{d}\left|\beta_{j}\right| \leq t \tag{4}
\end{equation*}
$$

- Lasso regression shrinks the regression coefficients by constraining the L_{1} norm of the parameters.

Definition [Tibshirani, 1996]

1. Lasso estimates $\hat{\beta}^{L}$ minimize

$$
\begin{equation*}
\sum_{i=1}^{n}\left(Y_{i}-\beta_{0}-\sum_{j=1}^{d} X_{i j} \beta_{j}\right)^{2} \quad \text { subject to } \quad \sum_{j=1}^{d}\left|\beta_{j}\right| \leq t \tag{4}
\end{equation*}
$$

2. or equivalently by imposing a penalty on the size of the coefficients

$$
\begin{equation*}
\hat{\beta}^{L}=\underset{\beta}{\operatorname{argmin}}\left\{\sum_{i=1}^{n}\left(Y_{i}-\beta_{0}-\sum_{j=1}^{d} X_{i j} \beta_{j}\right)^{2}+\lambda \sum_{j=1}^{d}\left|\beta_{j}\right|\right\} . \tag{5}
\end{equation*}
$$

Comparison Ridge-Lasso

- If \mathbb{X} is an orthonormal input matrix, we have an explicit solution for ridge and lasso.

Comparison Ridge-Lasso

- If \mathbb{X} is an orthonormal input matrix, we have an explicit solution for ridge and lasso.

Proposition

If \mathbb{X} is orthonormal, then

$$
\hat{\beta}_{j}^{R}=\frac{\hat{\beta}_{j}}{1+\lambda} \quad \text { and } \quad \hat{\beta}_{j}^{L}=\left\{\begin{array}{cl}
\operatorname{sign}\left(\hat{\beta}_{j}\right)\left(\left|\hat{\beta}_{j}\right|-\lambda\right) & \text { if }\left|\hat{\beta}_{j}\right| \geq \lambda \\
0 & \text { otherwise }
\end{array}\right.
$$

where $\hat{\beta}_{j}$ is the LS of β_{j}.

Comparison Ridge-Lasso

- If \mathbb{X} is an orthonormal input matrix, we have an explicit solution for ridge and lasso.

Proposition

If \mathbb{X} is orthonormal, then

$$
\hat{\beta}_{j}^{R}=\frac{\hat{\beta}_{j}}{1+\lambda} \quad \text { and } \quad \hat{\beta}_{j}^{L}=\left\{\begin{array}{cl}
\operatorname{sign}\left(\hat{\beta}_{j}\right)\left(\left|\hat{\beta}_{j}\right|-\lambda\right) & \text { if }\left|\hat{\beta}_{j}\right| \geq \lambda \\
0 & \text { otherwise }
\end{array}\right.
$$

where $\hat{\beta}_{j}$ is the LS of β_{j}.

Comments

- Ridge does a proportional shrinkage;

Comparison Ridge-Lasso

- If \mathbb{X} is an orthonormal input matrix, we have an explicit solution for ridge and lasso.

Proposition

If \mathbb{X} is orthonormal, then

$$
\hat{\beta}_{j}^{R}=\frac{\hat{\beta}_{j}}{1+\lambda} \quad \text { and } \quad \hat{\beta}_{j}^{L}=\left\{\begin{array}{cl}
\operatorname{sign}\left(\hat{\beta}_{j}\right)\left(\left|\hat{\beta}_{j}\right|-\lambda\right) & \text { if }\left|\hat{\beta}_{j}\right| \geq \lambda \\
0 & \text { otherwise }
\end{array}\right.
$$

where $\hat{\beta}_{j}$ is the LS of β_{j}.

Comments

- Ridge does a proportional shrinkage;
- Lasso translates each coefficient by a factor λ, truncating at 0 (when it is small).

Conclusion

Lasso put small coefficients to $0 \Longrightarrow$ variables with small coefficients are excluded from the model.

Relationship between ridge and lasso
Both methods find the first point where the elliptical contours hit the constraint region:

1. L_{2} for ridge and L_{1} norm for lasso.
2. The diamonds $\left(L_{1}\right)$ has corner \Longrightarrow the constraint region is often hit at a corner.

Some remarks

- As for ridge:
- input variables X_{1}, \ldots, X_{d} are generally standardized before the analysis.

Some remarks

- As for ridge:
- input variables X_{1}, \ldots, X_{d} are generally standardized before the analysis.
- $\lambda \nearrow \Longrightarrow$ bias \nearrow and variance \searrow and reciprocally as $\lambda \searrow$.

Some remarks

- As for ridge:
- input variables X_{1}, \ldots, X_{d} are generally standardized before the analysis.
- $\lambda \nearrow \Longrightarrow$ bias \nearrow and variance \searrow and reciprocally as $\lambda \searrow$.
- Choice of λ reveals crucial (minimization of an estimated criterion).

Some remarks

- As for ridge:
- input variables X_{1}, \ldots, X_{d} are generally standardized before the analysis.
- $\lambda \nearrow \Longrightarrow$ bias \nearrow and variance \searrow and reciprocally as $\lambda \searrow$.
- Choice of λ reveals crucial (minimization of an estimated criterion).
- BUT, unlike ridge: $\lambda \nearrow \Longrightarrow$ some estimated parameters equal 0 for lasso ([Bühlmann and van de Geer, 2011]).

UseR

```
> reg.lasso <- glmnet(prostate.data2[,2:9],prostate.data2[,10],alpha=1)
> plot(reg.lasso,label=TRUE)
> plot(reg.lasso,xvar="lambda",label=TRUE,lwd=2)
```


Choice of λ

```
> reg.cvlasso <- cv.glmnet(prostate.data2[,2:9],prostate.data2[,10],alpha=1)
> bestlam <- reg.cvlasso$lambda.min
> bestlam
[1] 0.02815637
> plot(reg.cvlasso)
```


Outline

1. Subset selection

2. Penalized regression

Ridge regression
Lasso regression
Supervised classification
3. Bibliography

Binary classification

- Ridge and lasso have been presented for regression.
- It is not difficult to adjust these methods to the logistic model $\mathcal{Y}=\{-1,1\}$.

Binary classification

- Ridge and lasso have been presented for regression.
- It is not difficult to adjust these methods to the logistic model $\mathcal{Y}=\{-1,1\}$.
- Penalty terms are the same.
- Only change: least square criterion is replaced by likelihood.

Lasso and Ridge for logistic regression

Definition

Let $\tilde{y}_{i}=\left(y_{i}+1\right) / 2\left(\tilde{y}_{i}=0\right.$ or 1$)$.

- Ridge estimates for logistic regression are defined by

$$
\hat{\beta}^{R}=\underset{\beta}{\operatorname{argmin}}\left\{-\sum_{i=1}^{n}\left(\tilde{y}_{i} x_{i}^{t} \beta-\log \left(1+\exp \left(x_{i}^{t} \beta\right)\right)\right)+\lambda \sum_{j=1}^{d} \beta_{j}^{2}\right\} .
$$

- Lasso estimates for logistic regression are defined by

$$
\hat{\beta}^{L}=\underset{\beta}{\operatorname{argmin}}\left\{-\sum_{i=1}^{n}\left(\tilde{y}_{i} x_{i}^{t} \beta-\log \left(1+\exp \left(x_{i}^{t} \beta\right)\right)\right)+\lambda \sum_{j=1}^{d}\left|\beta_{j}\right|\right\} .
$$

UseR

- To make ridge or lasso for logistic regression, we just have to add family=binomial in glmnet function.
- It is the only change (coefficient paths, choice of λ are the same...).

```
> colnames(donnees)
```

```
[1] "sbp" "tobacco" "ldl" "adiposity" "typea" "obesity"
```

[1] "sbp" "tobacco" "ldl" "adiposity" "typea" "obesity"
[7] "alcohol" "age" "chd"
[7] "alcohol" "age" "chd"
> log.ridge <- glmnet(donnees[,1:8],donnees[,9],family="binomial",alpha=0)
> log.ridge <- glmnet(donnees[,1:8],donnees[,9],family="binomial",alpha=0)
> log.lasso <- glmnet(donnees[,1:8],donnees[,9],family="binomial",alpha=1)
> log.lasso <- glmnet(donnees[,1:8],donnees[,9],family="binomial",alpha=1)
> plot(log.ridge,xvar="lambda")
> plot(log.ridge,xvar="lambda")
> plot(log.lasso,xvar="lambda")

```
> plot(log.lasso,xvar="lambda")
```


Elastic net

- [Zou and Hastie, 2005] have proposed to combine ridge and lasso with the following penalty term (called elastic net penalty)

$$
\lambda \sum_{j=1}^{d}\left((1-\alpha) \beta_{j}^{2}+\alpha\left|\beta_{j}\right|\right)
$$

where $\alpha \in[0,1]$.

Elastic net

- [Zou and Hastie, 2005] have proposed to combine ridge and lasso with the following penalty term (called elastic net penalty)

$$
\lambda \sum_{j=1}^{d}\left((1-\alpha) \beta_{j}^{2}+\alpha\left|\beta_{j}\right|\right)
$$

where $\alpha \in[0,1]$.

- α measures the trade-off ridge/lasso :
- $\alpha=1 \Longrightarrow$ Lasso;
- $\alpha=0 \Longrightarrow$ Ridge.

Elastic net

- [Zou and Hastie, 2005] have proposed to combine ridge and lasso with the following penalty term (called elastic net penalty)

$$
\lambda \sum_{j=1}^{d}\left((1-\alpha) \beta_{j}^{2}+\alpha\left|\beta_{j}\right|\right)
$$

where $\alpha \in[0,1]$.

- α measures the trade-off ridge/lasso :
- $\alpha=1 \Longrightarrow$ Lasso;
- $\alpha=0 \Longrightarrow$ Ridge.
- This parameter corresponds (obviously) to the alpha parameter in glmnet function.

Elastic net

- [Zou and Hastie, 2005] have proposed to combine ridge and lasso with the following penalty term (called elastic net penalty)

$$
\lambda \sum_{j=1}^{d}\left((1-\alpha) \beta_{j}^{2}+\alpha\left|\beta_{j}\right|\right)
$$

where $\alpha \in[0,1]$.

- α measures the trade-off ridge/lasso :
- $\alpha=1 \Longrightarrow$ Lasso;
- $\alpha=0 \Longrightarrow$ Ridge.
- This parameter corresponds (obviously) to the alpha parameter in glmnet function.
- Advantage: more flexible since elastic net includes ridge and lasso.

Elastic net

- [Zou and Hastie, 2005] have proposed to combine ridge and lasso with the following penalty term (called elastic net penalty)

$$
\lambda \sum_{j=1}^{d}\left((1-\alpha) \beta_{j}^{2}+\alpha\left|\beta_{j}\right|\right)
$$

where $\alpha \in[0,1]$.

- α measures the trade-off ridge/lasso :
- $\alpha=1 \Longrightarrow$ Lasso;
- $\alpha=0 \Longrightarrow$ Ridge.
- This parameter corresponds (obviously) to the alpha parameter in glmnet function.
- Advantage: more flexible since elastic net includes ridge and lasso.
- Drawback: we have to select both α and λ (you can use caret to do that).

Summary

- LASSO and ridge regressions allow to make efficient linear models when the classical linear model is defective:

Summary

- LASSO and ridge regressions allow to make efficient linear models when the classical linear model is defective:
- high correlations between inputs;
- high dimension (large number of inputs).

Summary

- LASSO and ridge regressions allow to make efficient linear models when the classical linear model is defective:
- high correlations between inputs;
- high dimension (large number of inputs).
- When the linear model is efficient, we don't need to use these methods.

Summary

- LASSO and ridge regressions allow to make efficient linear models when the classical linear model is defective:
- high correlations between inputs;
- high dimension (large number of inputs).
- When the linear model is efficient, we don't need to use these methods.
- Exercise 3-4, IML2.

Outline

1. Subset selection

2. Penalized regression

Ridge regression
Lasso regression
Supervised classification
3. Bibliography

Références i

Bühlmann, P. and van de Geer, S. (2011).
Statistics for high-dimensional data.
Springer.
Hastie, T., Tibshirani, R., and Friedman, J. (2009).
The Elements of Statistical Learning: Data Mining, Inference, and Prediction.
Springer, second edition.
Tibshirani, R. (1996).
Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society, Series B, 58:267-288.

Zou, H. and Hastie, T. (2005).
Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B, 67:301-320.

Part IV

Trees

Outline

1. Binary trees
2. Choice of the split

Regression
Supervised classification
3. Pruning a tree
4. Appendix: pruning algorithm
5. Bibliography

Presentation

- Tree algorithms are statistical learning algorithms for both regression and supervised classification.
- Popular method, not (too) difficult to understand, visualization tool.

Presentation

- Tree algorithms are statistical learning algorithms for both regression and supervised classification.
- Popular method, not (too) difficult to understand, visualization tool.
- Tree algorithms are not generally the most performant algorithms...

Presentation

- Tree algorithms are statistical learning algorithms for both regression and supervised classification.
- Popular method, not (too) difficult to understand, visualization tool.
- Tree algorithms are not generally the most performant algorithms... but a lot of efficient algorithms are defined from trees (random forest, gradient tree boosting...).

Presentation

- Tree algorithms are statistical learning algorithms for both regression and supervised classification.
- Popular method, not (too) difficult to understand, visualization tool.
- Tree algorithms are not generally the most performant algorithms... but a lot of efficient algorithms are defined from trees (random forest, gradient tree boosting...).
- There are different ways to build trees.
- We focus on the CART algorithm [Breiman et al., 1984] which is the most widely used algorithm to define trees.

Outline

1. Binary trees
2. Choice of the split

Regression
Supervised classification
3. Pruning a tree
4. Appendix: pruning algorithm
5. Bibliography

Notations

- The problem: explain output Y by p inputs X_{1}, \ldots, X_{p}.

Notations

- The problem: explain output Y by p inputs X_{1}, \ldots, X_{p}.
- Y might be categorical (binary or not) or continuous and X_{1}, \ldots, X_{p} categorical or continous.

Notations

- The problem: explain output Y by p inputs X_{1}, \ldots, X_{p}.
- Y might be categorical (binary or not) or continuous and X_{1}, \ldots, X_{p} categorical or continous.
- For simplicity (to make figures), we first assume that Y is binary (-1 ou 1) and that $p=2$ (2 inputs X_{1} and X_{2} continuous).

Data visualization

- n observations $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ where $X_{i} \in \mathbb{R}^{2}$ and $Y_{i} \in\{-1,1\}$.

Data visualization

- n observations $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ where $X_{i} \in \mathbb{R}^{2}$ and $Y_{i} \in\{-1,1\}$.

Tree partitions

Find a partition of the feature space into a set of rectangles which divides points according to their color.

Binary partitions

- CART algorithm restricts attention to recursive binary partitions.
- 2 examples:

- At each step, the method splits the data into two regions according to a split variable and a split point.

- At each step, the method splits the data into two regions according to a split variable and a split point.

- At each step, the method splits the data into two regions according to a split variable and a split point.

- At each step, the method splits the data into two regions according to a split variable and a split point.

- At each step, the method splits the data into two regions according to a split variable and a split point.

A tree partition

A tree partition

Classification rule

At the end, we do a majority vote in each cell of the partition (in each rectangle).

Definitions

Definitions

- Each elements of the partition are called terminal nodes.
- \mathbb{R}^{p} (the first node) is the root node.
- Each split (each question) defines two child nodes, the left and right child nodes.

Definitions

Definitions

- Each elements of the partition are called terminal nodes.
- \mathbb{R}^{p} (the first node) is the root node.
- Each split (each question) defines two child nodes, the left and right child nodes.

Question

- Tree process is recursive: we just have to know how to split a node.

Definitions

Definitions

- Each elements of the partition are called terminal nodes.
- \mathbb{R}^{p} (the first node) is the root node.
- Each split (each question) defines two child nodes, the left and right child nodes.

Question

- Tree process is recursive: we just have to know how to split a node.
- How to define a good split (or find a good question)?

Outline

1. Binary trees
2. Choice of the split

Regression
Supervised classification
3. Pruning a tree
4. Appendix: pruning algorithm
5. Bibliography

Question

How to choose a split?

Question

How to choose a split?

- At each step, we have to find (j, s) which split a node \mathcal{N} into two children nodes

$$
\mathcal{N}_{1}(j, s)=\left\{X \in \mathcal{N} \mid X_{j} \leq s\right\} \quad \text { and } \quad \mathcal{N}_{2}(j, s)=\left\{X \in \mathcal{N} \mid X_{j}>s\right\}
$$

Question

How to choose a split?

- At each step, we have to find (j, s) which split a node \mathcal{N} into two children nodes

$$
\mathcal{N}_{1}(j, s)=\left\{X \in \mathcal{N} \mid X_{j} \leq s\right\} \quad \text { and } \quad \mathcal{N}_{2}(j, s)=\left\{X \in \mathcal{N} \mid X_{j}>s\right\}
$$

- (j, s) is selected by minimizing a criterion which measures the impurity of the two children nodes.

Impurity

- Impurity of a node should be

1. small when the node is homogeneous: values of Y are closed to each other in the node.
2. large when the node is heterogeneous: values of Y are different from each other in the node.

Impurity

- Impurity of a node should be

1. small when the node is homogeneous: values of Y are closed to each other in the node.
2. large when the node is heterogeneous: values of Y are different from each other in the node.

The idea

For a given impurity measure \mathcal{I}, we choose the split (j, s) which minimizes

$$
\mathbf{P}\left(\mathcal{N}_{1}\right) \mathcal{I}\left(\mathcal{N}_{1}(j, s)\right)+\mathbf{P}\left(\mathcal{N}_{2}\right) \mathcal{I}\left(\mathcal{N}_{2}(j, s)\right)
$$

where $\mathrm{P}\left(\mathcal{N}_{k}\right)$ stands for the proportion of observations in $\mathcal{N}_{k}, k=1,2$

Outline

1. Binary trees

2. Choice of the split

Regression
Supervised classification
3. Pruning a tree
4. Appendix: pruning algorithm
5. Bibliography

- In regression (Y continuous), we usually use the variance to measure the impurity in the node

$$
\mathcal{I}(\mathcal{N})=\frac{1}{|\mathcal{N}|} \sum_{i: X_{i} \in \mathcal{N}}\left(Y_{i}-\bar{Y}_{\mathcal{N}}\right)^{2}
$$

where $\bar{Y}_{\mathcal{N}}$ is the mean of Y_{i} in \mathcal{N}.

- In regression (Y continuous), we usually use the variance to measure the impurity in the node

$$
\mathcal{I}(\mathcal{N})=\frac{1}{|\mathcal{N}|} \sum_{i: X_{i} \in \mathcal{N}}\left(Y_{i}-\bar{Y}_{\mathcal{N}}\right)^{2}
$$

where $\bar{Y}_{\mathcal{N}}$ is the mean of Y_{i} in \mathcal{N}.

Split for regression

At each step, we choose (j, s) which minimizes

$$
\sum_{X_{i} \in \mathcal{N}_{1}(j, s)}\left(Y_{i}-\bar{Y}_{1}\right)^{2}+\sum_{X_{i} \in \mathcal{N}_{2}(j, s)}\left(Y_{i}-\bar{Y}_{2}\right)^{2}
$$

where $\bar{Y}_{k}=\frac{1}{\left|\mathcal{N}_{k}(j, s)\right|} \sum_{X_{i} \in \mathcal{N}_{k}(j, s)} Y_{i}, k=1,2$.

Example

Example

Example

Example

Conclusion

We choose the right split.

Outline

1. Binary trees

2. Choice of the split

Regression
Supervised classification
3. Pruning a tree
4. Appendix: pruning algorithm
5. Bibliography

- $Y_{i}, i=1, \ldots, n$ take values in $\{1, \ldots, K\}$.
- $Y_{i}, i=1, \ldots, n$ take values in $\{1, \ldots, K\}$.
- We search an impurity function \mathcal{I} such $\mathcal{I}(\mathcal{N})$ is
- small if one label appears in majority in \mathcal{N}, if we can clearly differentiate one label from the other;
- large otherwise.
- $Y_{i}, i=1, \ldots, n$ take values in $\{1, \ldots, K\}$.
- We search an impurity function \mathcal{I} such $\mathcal{I}(\mathcal{N})$ is
- small if one label appears in majority in \mathcal{N}, if we can clearly differentiate one label from the other;
- large otherwise.

Definition

Impurity of \mathcal{N} is defined by

$$
\mathcal{I}(\mathcal{N})=\sum_{j=1}^{K} f\left(p_{j}(\mathcal{N})\right)
$$

where

- $p_{j}(\mathcal{N})$ stands for the proportion of class j in \mathcal{N}.
- f is a concave function $[0,1] \rightarrow \mathbb{R}^{+}$such that $f(0)=f(1)=0$.

Examples of functions f

- If \mathcal{N} is pur, we expect that $\mathcal{I}(\mathcal{N})=0$

Examples of functions f

- If \mathcal{N} is pur, we expect that $\mathcal{I}(\mathcal{N})=0 \Longrightarrow$ that's why $f(0)=f(1)=0$.

Examples of functions f

- If \mathcal{N} is pur, we expect that $\mathcal{I}(\mathcal{N})=0 \Longrightarrow$ that's why $f(0)=f(1)=0$.
- The two classical impurity functions are

1. Gini: $f(p)=p(1-p)$;
2. Information: $f(p)=-p \log (p)$.

Examples of functions f

- If \mathcal{N} is pur, we expect that $\mathcal{I}(\mathcal{N})=0 \Longrightarrow$ that's why $f(0)=f(1)=0$.
- The two classical impurity functions are

1. Gini: $f(p)=p(1-p)$;
2. Information: $f(p)=-p \log (p)$.

Binary case

We have

1. $\mathcal{I}(\mathcal{N})=2 p(1-p)$ for Gini
2. $\mathcal{I}(\mathcal{N})=-p \log p-(1-p) \log (1-p)$ for Information
where p stands for the proportion of 1 (or -1) in \mathcal{N}.

- gini - - information

Split for supervised classification

- Recall that for a given node \mathcal{N} and (j, s), the two child nodes are defined by

$$
\mathcal{N}_{1}(j, s)=\left\{X \in \mathcal{N} \mid X_{j} \leq s\right\} \quad \text { and } \quad \mathcal{N}_{2}(j, s)=\left\{X \in \mathcal{N} \mid X_{j}>s\right\} .
$$

Split for supervised classification

- Recall that for a given node \mathcal{N} and (j, s), the two child nodes are defined by

$$
\mathcal{N}_{1}(j, s)=\left\{X \in \mathcal{N} \mid X_{j} \leq s\right\} \quad \text { and } \quad \mathcal{N}_{2}(j, s)=\left\{X \in \mathcal{N} \mid X_{j}>s\right\} .
$$

Choice of (j, s)

For a given impurity measure \mathcal{I}, we choose (j, s) wich minimizes:

$$
\mathrm{P}\left(\mathcal{N}_{1}\right) \mathcal{I}\left(\mathcal{N}_{1}(j, s)\right)+\mathrm{P}\left(\mathcal{N}_{2}\right) \mathcal{I}\left(\mathcal{N}_{2}(j, s)\right)
$$

Example

$$
\mathcal{I}(\mathcal{N})=0.4872
$$

Example

Example

	$\mathcal{I}\left(\mathcal{N}_{1}\right)$	$\mathcal{I}\left(\mathcal{N}_{2}\right)$	Crit.
Left	0.287	0.137	0.2061
Right	0.488	0.437	0.4562

Example

Conclusion

We select the left split. (Exercise 1,2,3-IML3.)

Outline

1. Binary trees

2. Choice of the split

Regression
Supervised classification
3. Pruning a tree
4. Appendix: pruning algorithm
5. Bibliography

Questions

- How to select an efficient tree?

Questions

- How to select an efficient tree?
- Do we choose the maximum or deeper tree? (split the nodes until one observation by node).

Questions

- How to select an efficient tree?
- Do we choose the maximum or deeper tree? (split the nodes until one observation by node).
- Grow a large tree and then prune this tree (select a subtree of this large tree)?

An example for binary classification

An example for binary classification

Optimal tree?

Intuitively, we are tempted to choose 5 or 6 terminal nodes.

"Deeper" tree

```
> library(rpart)
> library(rpart.plot)
> tree1 <- rpart(Y~.,data=my_data,cp=0.0001,minsplit=2)
> prp(tree1)
```


A smaller tree

```
> tree2 <- rpart(Y~.,data=my_data)
> prp(tree2)
```


Comparison

- We estimate the misclassification error of these two trees on a test set.

```
> prev1 <- predict(tree1,newdata=dtest,type="class")
> prev2 <- predict(tree2,newdata=dtest,type="class")
> round(mean(prev1!=dtest$Y),3)
[1] 0.157
> round(mean(prev2!=dtest$Y),3)
[1] 0.115
```


Comparison

- We estimate the misclassification error of these two trees on a test set.

```
> prev1 <- predict(tree1,newdata=dtest,type="class")
> prev2 <- predict(tree2,newdata=dtest,type="class")
> round(mean(prev1!=dtest$Y),3)
[1] 0.157
> round(mean(prev2!=dtest$Y),3)
[1] 0.115
```


Conclusion

- Performance is not always improved by the size of the tree.

Comparison

- We estimate the misclassification error of these two trees on a test set.

```
> prev1 <- predict(tree1,newdata=dtest,type="class")
> prev2 <- predict(tree2,newdata=dtest,type="class")
> round(mean(prev1!=dtest$Y),3)
[1] 0.157
> round(mean(prev2!=dtest$Y),3)
[1] 0.115
```


Conclusion

- Performance is not always improved by the size of the tree.
- Tree size is a tuning parameter which governs the model's complexity. We have to select this parameter.

Overfitting

Remark

Complexity is governed by the depth (or size) of the tree.

Bias and variance

Depth controls the tradeoff bias/variance :

1. Small tree \Longrightarrow steady (robust) tree \Longrightarrow small variance... but... large bias.
2. Large tree \Longrightarrow unsteady tree \Longrightarrow small bias... but... large variance (overfitting).

Depth controls the tradeoff bias/variance :

1. Small tree \Longrightarrow steady (robust) tree \Longrightarrow small variance... but... large bias.
2. Large tree \Longrightarrow unsteady tree \Longrightarrow small bias... but... large variance (overfitting).

Pruning [Breiman et al., 1984]

Instead of stopping the splitting process, we

1. grow a large tree (very deep tree) $\mathcal{T}_{\text {max }}$;
2. then select a sequence of nested subtrees (see Appendix 4.4):

$$
\mathcal{T}_{\text {max }}=\mathcal{T}_{0} \supset \mathcal{T}_{1} \supset \ldots \supset \mathcal{T}_{K} .
$$

3. finally select one subtree in this sequence.

Nested trees

Nested trees
(1)

Example

```
> printcp(tree)
Classification tree:
rpart(formula = Y ~ ., data = my_data, cp = 1e-04, minsplit = 2)
Variables actually used in tree construction:
[1] X1 X2
Root node error: 204/500 = 0.408
n= 500
    CP nsplit rel error xerror xstd
1 0.2941176 0}1.000000 1.00000 0.05387
2 0.1225490 1 0.705882 0.71569 0.049838
3 0.0931373 3 0.460784 0.49020 0.043844
4 0.0637255 4 0.367647 0.43627 0.041928
5 0.0122549 5 0.303922 0.34314 0.038034
6 0.0098039 7 0.279412 0.34314 0.038034
7 0.0049020 9 0.259804 0.36275 0.038923
8 0.0040107 25 0.181373 0.34804 0.038260
9 0.0036765 41 0.112745 0.39216 0.040184
10 0.0032680 49 0.083333 0.40196 0.040586
11 0.0024510 52 0.073529 0.41176 0.040980
12 0.0001000 82 0.000000 0.43137 0.041742
```

> arbre1 <- prune(tree, $c p=0.005$)
> prp(tree)
> prp(tree1)

Remark

We have to select one tree in the sequence

$$
T_{\max }=T_{0} \supset T_{1} \supset \ldots \supset T_{M}
$$

The final tree

Risk estimation

We choose the final tree by minimizing a risk $\mathcal{R}\left(T_{m}\right)=\mathrm{E}\left[\ell\left(Y, T_{m}(X)\right]\right.$ (as usual). For instance,

1. quadratic risk $\mathbf{E}\left[\left(Y-T_{m}(X)\right)^{2}\right]$ in regression ;
2. misclassification error $\mathrm{P}\left(Y \neq T_{m}(X)\right)$ in supervised classification.

This risk is unknown and is generally estimated by cross validation.

The final tree

Risk estimation

We choose the final tree by minimizing a risk $\mathcal{R}\left(T_{m}\right)=\mathrm{E}\left[\ell\left(Y, T_{m}(X)\right]\right.$ (as usual). For instance,

1. quadratic risk $\mathbf{E}\left[\left(Y-T_{m}(X)\right)^{2}\right]$ in regression ;
2. misclassification error $\mathrm{P}\left(Y \neq T_{m}(X)\right)$ in supervised classification.

This risk is unknown and is generally estimated by cross validation.

Select the optimal tree

The approach consists in

1. estimating the risk for each subtree.
2. selecting the subtree which minimizes the estimated risk.

- Estimations of $\mathcal{R}(m)$ are in the column xerror of the function printcp:

| | CP nsplit rel error | xerror | xstd | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0.2941176 | 0 | 1.000000 | 1.00000 | 0.053870 |
| 2 | 0.1225490 | 1 | 0.705882 | 0.71569 | 0.049838 |
| 3 | 0.0931373 | 3 | 0.460784 | 0.49020 | 0.043844 |
| 4 | 0.0637255 | 4 | 0.367647 | 0.43627 | 0.041928 |
| 5 | 0.0122549 | 5 | 0.303922 | 0.34314 | 0.038034 |
| 6 | 0.0098039 | 7 | 0.279412 | 0.34314 | 0.038034 |
| 7 | 0.0049020 | 9 | 0.259804 | 0.36275 | 0.038923 |

- Estimations of $\mathcal{R}(m)$ are in the column xerror of the function printcp:
CP nsplit rel error xerror xstd
$10.2941176 \quad 0 \quad 1.0000001 .000000 .053870$
$20.1225490 \quad 1 \quad 0.7058820 .715690 .049838$
$\begin{array}{llllll}3 & 0.0931373 & 3 & 0.460784 & 0.49020 & 0.043844\end{array}$
$\begin{array}{lllllll}4 & 0.0637255 & 4 & 0.367647 & 0.43627 & 0.041928\end{array}$
$\begin{array}{lllllll}5 & 0.0122549 & 5 & 0.303922 & 0.34314 & 0.038034\end{array}$
$\begin{array}{lllllll}6 & 0.0098039 & 7 & 0.279412 & 0.34314 & 0.038034\end{array}$
$\begin{array}{lllllll}7 & 0.0049020 & 9 & 0.259804 & 0.36275 & 0.038923\end{array}$
- We can look at the estimated error for each subtree with plotcp

```
> plotcp(tree3)
```


Conclusion

We choose the tree with 5 splits.

Visualisation of the final tree

```
> alpha_opt <- arbre$cptable[which.min(tree$cptable[,"xerror"]),"CP"]
> tree_final <- prune(tree,cp=alpha_opt)
> prp(tree_final)
```


Classification rule and score for a tree

- Final tree \mathcal{T} consists of a partition of \mathbb{R}^{p} into $|\mathcal{T}|$ terminal nodes $\mathcal{N}_{1}, \ldots, \mathcal{N}_{|\mathcal{T}|}$.

Classification rule and score for a tree

- Final tree \mathcal{T} consists of a partition of \mathbb{R}^{p} into $|\mathcal{T}|$ terminal nodes $\mathcal{N}_{1}, \ldots, \mathcal{N}_{|\mathcal{T}|}$.
- Classification rule:

$$
\hat{g}(x)= \begin{cases}1 & \text { if } \sum_{i: X_{i \in \mathcal{N}(x)}} \mathbf{1}_{Y_{i}=1} \geq \sum_{i: X_{i} \in \mathcal{N}(x)} \mathbf{1}_{Y_{i}=0} \\ 0 & \text { otherwise }\end{cases}
$$

where $\mathcal{N}(x)$ stands for the terminal node which contains x.

Classification rule and score for a tree

- Final tree \mathcal{T} consists of a partition of \mathbb{R}^{p} into $|\mathcal{T}|$ terminal nodes $\mathcal{N}_{1}, \ldots, \mathcal{N}_{|\mathcal{T}|}$.
- Classification rule:

$$
\hat{g}(x)= \begin{cases}1 & \text { if } \sum_{i: X_{i \in \mathcal{N}(x)}} \mathbf{1}_{Y_{i}=1} \geq \sum_{i: X_{i} \in \mathcal{N}(x)} \mathbf{1}_{Y_{i}=0} \\ 0 & \text { otherwise }\end{cases}
$$

where $\mathcal{N}(x)$ stands for the terminal node which contains x.

- Score:

$$
\hat{S}(x)=\hat{\mathrm{P}}(Y=1 \mid X=x)=\frac{1}{n} \sum_{i: X_{i} \in \mathcal{N}(x)} \mathbf{1}_{Y_{i}=1}
$$

Predict function

- predict function (or predict.rpart) allows to estimate the label or the score of a new observation:

```
> x_new <- data.frame(X1=0.5,X2=0.85)
> predict(arbre_final,newdata=x_new)
    0 1
1 0.9 0.1
> predict(arbre_final,newdata=x_new,type="class")
1
0
Levels: 0 1
```


Conclusion

- "Simple" method for both regression and supervised classification.
- We can interpret the model (plot the tree) if the tree is not too large.

Conclusion

- "Simple" method for both regression and supervised classification.
- We can interpret the model (plot the tree) if the tree is not too large.
- One drawback: due to the recursive process, the algorithm is not robust, affected by small disturbances in the sample.

Conclusion

- "Simple" method for both regression and supervised classification.
- We can interpret the model (plot the tree) if the tree is not too large.
- One drawback: due to the recursive process, the algorithm is not robust, affected by small disturbances in the sample.
- This drawback will become an advantage for bootstrap aggregating \Longrightarrow random forest.

Conclusion

- "Simple" method for both regression and supervised classification.
- We can interpret the model (plot the tree) if the tree is not too large.
- One drawback: due to the recursive process, the algorithm is not robust, affected by small disturbances in the sample.
- This drawback will become an advantage for bootstrap aggregating \Longrightarrow random forest.
- Exercise 4-IML3.

Outline

1. Binary trees

2. Choice of the split

Regression
Supervised classification
3. Pruning a tree
4. Appendix: pruning algorithm
5. Bibliography

Construction of the sequence

- Let T be a tree with $|T|$ terminal nodes $\mathcal{N}_{1}, \ldots, \mathcal{N}_{|T|}$.
- Define $R(\mathcal{N})$ the risk (error) in node \mathcal{N} :
- Regression:

$$
R(\mathcal{N})=\frac{1}{|\mathcal{N}|} \sum_{i: X_{i} \in \mathcal{N}}\left(Y_{i}-\bar{Y}_{\mathcal{N}}\right)^{2}
$$

- Classification:

$$
R(\mathcal{N})=\frac{1}{|\mathcal{N}|} \sum_{i: X_{i} \in \mathcal{N}} \mathbf{1}_{Y_{i} \neq Y_{\mathcal{N}}}
$$

Construction of the sequence

- Let T be a tree with $|T|$ terminal nodes $\mathcal{N}_{1}, \ldots, \mathcal{N}_{|T|}$.
- Define $R(\mathcal{N})$ the risk (error) in node \mathcal{N} :
- Regression:

$$
R(\mathcal{N})=\frac{1}{|\mathcal{N}|} \sum_{i: X_{i} \in \mathcal{N}}\left(Y_{i}-\bar{Y}_{\mathcal{N}}\right)^{2}
$$

- Classification:

$$
R(\mathcal{N})=\frac{1}{|\mathcal{N}|} \sum_{i: X_{i} \in \mathcal{N}} \mathbf{1}_{Y_{i} \neq Y_{\mathcal{N}}}
$$

Definition

For $\alpha>0$,

$$
C_{\alpha}(T)=\sum_{m=1}^{|T|} N_{m} R\left(\mathcal{N}_{m}\right)+\alpha|T|
$$

is the cost complexity criterion of T.

The idea

- $C_{\alpha}(T)$ measures both the fitting and the complexity of the tree.
- The idea is to find the subtree T_{α} which minimizes $C_{\alpha}(T)$ for a safe choice of α.

The idea

- $C_{\alpha}(T)$ measures both the fitting and the complexity of the tree.
- The idea is to find the subtree T_{α} which minimizes $C_{\alpha}(T)$ for a safe choice of α.

Remark

- $\alpha=0 \Longrightarrow T_{\alpha}=T_{0}=T_{\text {max }}$.
- $\alpha=+\infty \Longrightarrow T_{\alpha}=T_{+\infty}=$ tree without split.

The idea

- $C_{\alpha}(T)$ measures both the fitting and the complexity of the tree.
- The idea is to find the subtree T_{α} which minimizes $C_{\alpha}(T)$ for a safe choice of α.

Remark

- $\alpha=0 \Longrightarrow T_{\alpha}=T_{0}=T_{\text {max }}$.
- $\alpha=+\infty \Longrightarrow T_{\alpha}=T_{+\infty}=$ tree without split.
- α is called the complexity parameter.

Breiman et al., 1984

The exists a finite sequence $\alpha_{0}=0<\alpha_{1}<\ldots<\alpha_{M}$ with $M<\left|T_{\max }\right|$ and a sequence of nested trees

$$
T_{\max }=T_{0} \supset T_{1} \supset \ldots \supset T_{M}
$$

such thah $\forall \alpha \in\left[\alpha_{m}, \alpha_{m+1}[\right.$

$$
T_{m}=\underset{T}{\operatorname{argmin}} C_{\alpha}(T) .
$$

Breiman et al., 1984

The exists a finite sequence $\alpha_{0}=0<\alpha_{1}<\ldots<\alpha_{M}$ with $M<\left|T_{\max }\right|$ and a sequence of nested trees

$$
T_{\max }=T_{0} \supset T_{1} \supset \ldots \supset T_{M}
$$

such thah $\forall \alpha \in\left[\alpha_{m}, \alpha_{m+1}[\right.$

$$
T_{m}=\underset{T}{\operatorname{argmin}} C_{\alpha}(T) .
$$

Theorem [Breiman et al., 1984]

The exists a finite sequence $\alpha_{0}=0<\alpha_{1}<\ldots<\alpha_{M}$ with $M<\left|T_{\max }\right|$ and a sequence of nested trees

$$
T_{\max }=T_{0} \supset T_{1} \supset \ldots \supset T_{M}
$$

such thah $\forall \alpha \in\left[\alpha_{m}, \alpha_{m+1}[\right.$

$$
T_{m}=\underset{T}{\operatorname{argmin}} C_{\alpha}(T) .
$$

Important consequence

- We now are faced with a finite sequence of nested trees.
- We have to choose one tree in this sequence (or one value of α).

Outline

```
1. Binary trees
2. Choice of the split
Regression
Supervised classification
3. Pruning a tree
```

4. Appendix: pruning algorithm
5. Bibliography
(1984). Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984) Classification and regression trees.
Wadsworth \& Brooks.

Part V

Bagging and random forests

Outline

1. Bagging
2. Random forests

The algorithm
OOB error
Variable importance
3. Bibliography

Outline

1. Bagging
2. Random forests

The algorithm
OOB error
Variable importance
3. Bibliography

- Bagging is a set of algorithms introduced by Léo Breiman [Breiman, 1996].
- Bagging comes from Bootstrap Aggregating.
- Bagging is a set of algorithms introduced by Léo Breiman [Breiman, 1996].
- Bagging comes from Bootstrap Aggregating.

The idea

- Instead of fitting one "sophisticated" machine, fit a lot of simple machines and aggregate them.
- Bagging is a set of algorithms introduced by Léo Breiman [Breiman, 1996].
- Bagging comes from Bootstrap Aggregating.

The idea

- Instead of fitting one "sophisticated" machine, fit a lot of simple machines and aggregate them.
- Example:

$$
\widehat{m}(x)=\frac{1}{B} \sum_{k=1}^{B} \widehat{m}_{k}(x)
$$

where $\widehat{m}_{1}(x), \ldots, \widehat{m}_{B}(x)$ are simple machines.

Questions

- How to define the simple machines?

Questions

- How to define the simple machines?
- Do we choose efficient simple machines? Not efficient (large bias, large variance) machines?

Questions

- How to define the simple machines?
- Do we choose efficient simple machines? Not efficient (large bias, large variance) machines?
- How many machines?
- One constraint: we want to fit simple machines in a similar way (only trees for instance).
- One constraint: we want to fit simple machines in a similar way (only trees for instance).
- Problem: if you run the same algorithm on the same dataset $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, all simple machines will be the same and

$$
\widehat{m}(x)=\frac{1}{B} \sum_{k=1}^{B} \widehat{m}_{k}(x)=\widehat{m}_{1}(x)
$$

- One constraint: we want to fit simple machines in a similar way (only trees for instance).
- Problem: if you run the same algorithm on the same dataset $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, all simple machines will be the same and

$$
\widehat{m}(x)=\frac{1}{B} \sum_{k=1}^{B} \widehat{m}_{k}(x)=\widehat{m}_{1}(x)
$$

\Longrightarrow aggregation is useless.

- One constraint: we want to fit simple machines in a similar way (only trees for instance).
- Problem: if you run the same algorithm on the same dataset $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, all simple machines will be the same and

$$
\widehat{m}(x)=\frac{1}{B} \sum_{k=1}^{B} \widehat{m}_{k}(x)=\widehat{m}_{1}(x)
$$

\Longrightarrow aggregation is useless.

- Solution: run the same algorithm on different datasets.

Bootstrap sample

- We have at hand one dataset $\mathcal{D}_{n}=\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$.

Bootstrap sample

- We have at hand one dataset $\mathcal{D}_{n}=\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$.
- We will not create or invent data!

Bootstrap sample

- We have at hand one dataset $\mathcal{D}_{n}=\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$.
- We will not create or invent data!

Bootstrap

- Define new datasets by randomly draw dataset with replacement from the training data.

Bootstrap: example

- The sample:

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\end{array}
$$

Bootstrap: example

- The sample:

1	2	3	4	5	6	7	8	9	10

- Bootstrap samples:

3	4	6	10	3	9	10	7	7	1	m_{1}
2	8	6	2	10	10	2	9	5	6	m_{2}
2	9	4	4	7	7	2	3	6	7	m_{3}
6	1	3	3	9	3	8	10	10	1	m_{4}
3	7	10	3	2	8	6	9	10	2	m_{5}
	\vdots								\vdots	
7	10	3	4	9	10	10	8	6	1	m_{B}

Bootstrap: example

- The sample:

1	2	3	4	5	6	7	8	9	10

- Bootstrap samples:

3	4	6	10	3	9	10	7	7	1	m_{1}
2	8	6	2	10	10	2	9	5	6	m_{2}
2	9	4	4	7	7	2	3	6	7	m_{3}
6	1	3	3	9	3	8	10	10	1	m_{4}
3	7	10	3	2	8	6	9	10	2	m_{5}
	\vdots								\vdots	
7	10	3	4	9	10	10	8	6	1	m_{B}

- We finally aggregate:

$$
\widehat{m}_{B}(x)=\frac{1}{B} \sum_{k=1}^{B} m_{k}(x)
$$

Bagging algorithm

- Estimates m_{k} are not fitted on the original dataset $\mathcal{D}_{n}=\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ but on bootstrap samples.

Bagging algorithm

- Estimates m_{k} are not fitted on the original dataset $\mathcal{D}_{n}=\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ but on bootstrap samples.

Bagging

Inputs:

- a "simple machine" (a tree, 1NN rule...)
- B a positive integer.

Bagging algorithm

- Estimates m_{k} are not fitted on the original dataset $\mathcal{D}_{n}=\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ but on bootstrap samples.

Bagging

Inputs:

- a "simple machine" (a tree, 1NN rule...)
- B a positive integer.

For $k=1, \ldots, B$:

1. Draw a bootstrap sample from \mathcal{D}_{n}.
2. Fit the simple machine on this bootstrap sample: $m_{k}(x)$.

Output: the aggregate estimate $\widehat{m}_{B}(x)=\frac{1}{B} \sum_{k=1}^{B} m_{k}(x)$.

How to choose B?

- 2 parameters have to be chosen: the number of iterations B and the simple machine.

How to choose B?

- 2 parameters have to be chosen: the number of iterations B and the simple machine.
- From the Law of Large Numbers, we can prove that

$$
\lim _{B \rightarrow+\infty} \widehat{m}_{B}(x)=\lim _{B \rightarrow+\infty} \frac{1}{B} \sum_{k=1}^{B} m_{k}(x)=\bar{m}\left(x, \mathcal{D}_{n}\right) \quad \text { a.s } \mid \mathcal{D}_{n} .
$$

How to choose B?

- 2 parameters have to be chosen: the number of iterations B and the simple machine.
- From the Law of Large Numbers, we can prove that

$$
\lim _{B \rightarrow+\infty} \widehat{m}_{B}(x)=\lim _{B \rightarrow+\infty} \frac{1}{B} \sum_{k=1}^{B} m_{k}(x)=\bar{m}\left(x, \mathcal{D}_{n}\right) \quad \text { a.s } \mid \mathcal{D}_{n} .
$$

- As B increases, \widehat{m}_{B} stabilizes.

How to choose B?

- 2 parameters have to be chosen: the number of iterations B and the simple machine.
- From the Law of Large Numbers, we can prove that

$$
\lim _{B \rightarrow+\infty} \widehat{m}_{B}(x)=\lim _{B \rightarrow+\infty} \frac{1}{B} \sum_{k=1}^{B} m_{k}(x)=\bar{m}\left(x, \mathcal{D}_{n}\right) \quad \text { a.s } \mid \mathcal{D}_{n} .
$$

- As B increases, \widehat{m}_{B} stabilizes.

Important conclusion

- B is not an important parameter, we have to choose it as large as possible (often 500).
- Bagging is random but it is less random when B is large.

Some properties

Bias and variance

For regression, we have $\mathbf{E}\left[\widehat{m}_{B}(x)\right]=\mathbf{E}\left[m_{k}(x)\right], \forall k=1, \ldots, B$ and

$$
\mathbf{V}\left[\widehat{m}_{B}(x)\right] \approx|\rho(x)| \mathbf{V}\left[m_{k}(x)\right]
$$

where $\rho(x)=\operatorname{corr}\left(m_{k}(x), m_{k^{\prime}}(x)\right)$ for $k \neq k^{\prime}$.

Some properties

Bias and variance

For regression, we have $\mathrm{E}\left[\widehat{m}_{B}(x)\right]=\mathrm{E}\left[m_{k}(x)\right], \forall k=1, \ldots, B$ and

$$
\mathbf{V}\left[\widehat{m}_{B}(x)\right] \approx|\rho(x)| \mathbf{V}\left[m_{k}(x)\right]
$$

where $\rho(x)=\operatorname{corr}\left(m_{k}(x), m_{k^{\prime}}(x)\right)$ for $k \neq k^{\prime}$.

Remarks

- Bias is not affected by the bagging process.

Some properties

Bias and variance

For regression, we have $\mathrm{E}\left[\widehat{m}_{B}(x)\right]=\mathrm{E}\left[m_{k}(x)\right], \forall k=1, \ldots, B$ and

$$
\mathbf{V}\left[\widehat{m}_{B}(x)\right] \approx|\rho(x)| \mathbf{V}\left[m_{k}(x)\right]
$$

where $\rho(x)=\operatorname{corr}\left(m_{k}(x), m_{k^{\prime}}(x)\right)$ for $k \neq k^{\prime}$.

Remarks

- Bias is not affected by the bagging process.
- Variance of the bagging estimate reduces when correlation between the simple machines decreases.

Some properties

Bias and variance

For regression, we have $\mathrm{E}\left[\widehat{m}_{B}(x)\right]=\mathrm{E}\left[m_{k}(x)\right], \forall k=1, \ldots, B$ and

$$
\mathbf{V}\left[\widehat{m}_{B}(x)\right] \approx|\rho(x)| \mathbf{V}\left[m_{k}(x)\right]
$$

where $\rho(x)=\operatorname{corr}\left(m_{k}(x), m_{k^{\prime}}(x)\right)$ for $k \neq k^{\prime}$.

Remarks

- Bias is not affected by the bagging process.
- Variance of the bagging estimate reduces when correlation between the simple machines decreases.
- Consequence: we need simple machines sensitive to small disturbances of the data.

Some properties

Bias and variance

For regression, we have $\mathrm{E}\left[\widehat{m}_{B}(x)\right]=\mathrm{E}\left[m_{k}(x)\right], \forall k=1, \ldots, B$ and

$$
\mathbf{V}\left[\widehat{m}_{B}(x)\right] \approx|\rho(x)| \mathbf{V}\left[m_{k}(x)\right]
$$

where $\rho(x)=\operatorname{corr}\left(m_{k}(x), m_{k^{\prime}}(x)\right)$ for $k \neq k^{\prime}$.

Remarks

- Bias is not affected by the bagging process.
- Variance of the bagging estimate reduces when correlation between the simple machines decreases.
- Consequence: we need simple machines sensitive to small disturbances of the data.
- Trees are known to satisfy this property (drawback becomes an advantage...).

Outline

1. Bagging

2. Random forests

The algorithm
OOB error
Variable importance
3. Bibliography

Outline

1. Bagging

2. Random forests

The algorithm

OOB error

Variable importance
3. Bibliography

Tree (reminder)

Tree (reminder)

Important parameter: depth

- small: bias \nearrow, variance 】
- large: bias \searrow, variance \nearrow
- A random forest $=$ a collection of trees.
- A random forest $=$ a collection of trees.
- These algorithms have been studied by Léo Breiman (2000).
- A random forest $=$ a collection of trees.
- These algorithms have been studied by Léo Breiman (2000).
- References
http://www.stat.berkeley.edu/~breiman/RandomForests/ Robin Genuer's phd thesis [Genuer, 2010].
- Trees are fitted as for the CART process (no pruning) with only one small variation.

Trees for the forest

- At each step, the best split is selected among mtry $\leq d$ inputs randomly chosen among the d inputs.

Trees for the forest

- At each step, the best split is selected among mtry $\leq d$ inputs randomly chosen among the d inputs.
- Goal: try to reduce correlations between the trees, to make the trees more different from each other.

Random forest algorithm

Inputs:

- B size of the forest;
- mtry $\in\{1, \ldots, d\}$ number of candidate inputs for each split.

Random forest algorithm

Inputs:

- B size of the forest;
- $m t r y \in\{1, \ldots, d\}$ number of candidate inputs for each split.

For $k=1, \ldots, B$:

1. Draw a bootstrap sample from \mathcal{D}_{n};
2. Fit a tree according to the CART process, each split is chosen among mtry variables randomly chosen among the d input variables. Denote by $T_{k}(x)$ the tree.

Output: the random forest $\widehat{T}_{B}(x)=\frac{1}{B} \sum_{k=1}^{B} T_{k}(x)$.

Comments

- The algorithm is for both regression and binary classfication:

1. for regression, the RF estimates $m^{\star}(x)=\mathbf{E}[Y \mid X=x]$;
2. for binary classification, the RF estimates $S^{\star}(x)=\mathbf{P}(Y=1 \mid X=x)$.

Comments

- The algorithm is for both regression and binary classfication:

1. for regression, the RF estimates $m^{\star}(x)=\mathbf{E}[Y \mid X=x]$;
2. for binary classification, the RF estimates $S^{\star}(x)=\mathbf{P}(Y=1 \mid X=x)$.

- Simple algorithm. On R, you can use randomForest function from the randomForest package or the ranger function from the ranger package.

Comments

- The algorithm is for both regression and binary classfication:

1. for regression, the RF estimates $m^{\star}(x)=\mathbf{E}[Y \mid X=x]$;
2. for binary classification, the RF estimates $S^{\star}(x)=\mathbf{P}(Y=1 \mid X=x)$.

- Simple algorithm. On R, you can use randomForest function from the randomForest package or the ranger function from the ranger package.
- Estimate known to be efficient for complex data and robust (wrt to the choice of its parameter).

Choice of the parameter

- B: large.

Choice of the parameter

- B: large.

Remind

Bagging decreases the variance:

$$
\mathbf{V}\left[\widehat{T}_{B}(x)\right] \approx|\rho(x)| \mathbf{V}\left[T_{k}(x)\right]
$$

Choice of the parameter

- B: large.

Remind

Bagging decreases the variance:

$$
\mathbf{V}\left[\widehat{T}_{B}(x)\right] \approx|\rho(x)| \mathbf{V}\left[T_{k}(x)\right]
$$

Consequence

- Bias is not improved by the bagging process, it is recommended to use trees with small bias and large variance.

Choice of the parameter

- B: large.

Remind

Bagging decreases the variance:

$$
\mathbf{V}\left[\widehat{T}_{B}(x)\right] \approx|\rho(x)| \mathbf{V}\left[T_{k}(x)\right]
$$

Consequence

- Bias is not improved by the bagging process, it is recommended to use trees with small bias and large variance.
- Trees for forest are deep trees with a small number of observations in each terminal node.

Choice of the parameter

- B: large.

Remind

Bagging decreases the variance:

$$
\mathbf{V}\left[\widehat{T}_{B}(x)\right] \approx|\rho(x)| \mathbf{V}\left[T_{k}(x)\right]
$$

Consequence

- Bias is not improved by the bagging process, it is recommended to use trees with small bias and large variance.
- Trees for forest are deep trees with a small number of observations in each terminal node.
- By default randomForest fit trees with (only) 5 observations in terminal nodes for regression and 1 for supervised classification.

Choice of mtry

- This parameter (slightly) governs the bias/variance trade-off of the forest.

Choice of mtry

- This parameter (slightly) governs the bias/variance trade-off of the forest.

Conclusion

- We can look at the performances of the forest for many values of mtry.
- By default mtry $=d / 3$ for regression and \sqrt{d} for supervised classification.

Application on the spam dataset

```
> library(randomForest)
> forest1 <- randomForest(type~.,data=spam)
> forest1
Call:
    randomForest(formula = type ~ ., data = spam)
    Type of random forest: classification
                            Number of trees: 500
No. of variables tried at each split: 7
    OOB estimate of error rate: 5.26%
Confusion matrix:
        0 1 class.error
0 1352 42 0.03012912
1 79 827 0.08719647
```


Outline

1. Bagging

2. Random forests

The algorithm

OOB error

Variable importance
3. Bibliography

Random forest performance

- As for other machine learning algorithms, we need criteria to measure performances of a random forest.

Random forest performance

- As for other machine learning algorithms, we need criteria to measure performances of a random forest.
- Examples:
- Quadratic risk $\mathbf{E}\left[\left(Y-\widehat{T}_{B}(X)\right)^{2}\right]$ for regression;
- Misclassification error $\mathbf{P}\left(Y \neq \widehat{T}_{B}(X)\right)$ for supervised classification.

Random forest performance

- As for other machine learning algorithms, we need criteria to measure performances of a random forest.
- Examples:
- Quadratic risk $\mathbf{E}\left[\left(Y-\widehat{T}_{B}(X)\right)^{2}\right]$ for regression;
- Misclassification error $\mathbf{P}\left(Y \neq \widehat{T}_{B}(X)\right)$ for supervised classification.
- These criteria can be estimated by validation hold out or cross validation.

Random forest performance

- As for other machine learning algorithms, we need criteria to measure performances of a random forest.
- Examples:
- Quadratic risk $\mathbf{E}\left[\left(Y-\widehat{T}_{B}(X)\right)^{2}\right]$ for regression;
- Misclassification error $\mathbf{P}\left(Y \neq \widehat{T}_{B}(X)\right)$ for supervised classification.
- These criteria can be estimated by validation hold out or cross validation.
- Bootstrap step in bagging algorithms proposes another way to estimate these criteria: OOB (Out Of Bag).

Ouf Of Bag error

- For each $\left(X_{i}, Y_{i}\right)$, construct its random forest predictor by averaging only those trees corresponding to bootstrap samples in which $\left(X_{i}, Y_{i}\right)$ does not appear:

$$
\hat{Y}_{i}=\frac{1}{\left|\mathcal{I}_{B}\right|} \sum_{k \in \mathcal{I}_{B}} T_{k}\left(X_{i}\right)
$$

where \mathcal{I}_{B} is the set of trees such that $\left(X_{i}, Y_{i}\right)$ is Out Of Bag.

Ouf Of Bag error

- For each $\left(X_{i}, Y_{i}\right)$, construct its random forest predictor by averaging only those trees corresponding to bootstrap samples in which $\left(X_{i}, Y_{i}\right)$ does not appear:

$$
\hat{Y}_{i}=\frac{1}{\left|\mathcal{I}_{B}\right|} \sum_{k \in \mathcal{I}_{B}} T_{k}\left(X_{i}\right)
$$

where \mathcal{I}_{B} is the set of trees such that $\left(X_{i}, Y_{i}\right)$ is Out Of Bag.

Out Of Bag estimates

- OOB quadratic risk: $\frac{1}{n} \sum_{i=1}^{n}\left(\hat{Y}_{i}-Y_{i}\right)^{2}$.
- OOB misclassification error: $\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\hat{Y}_{i} \neq Y_{i}}$.

Example

3	4	6	10	3	9	10	7	7	1	m_{1}
2	8	6	2	10	10	2	9	5	6	m_{2}
2	9	4	4	7	7	2	3	6	7	m_{3}
6	1	3	3	9	3	8	10	10	1	m_{4}
3	7	10	3	2	8	6	9	10	2	m_{5}
7	10	3	4	9	10	10	8	6	1	m_{6}

Example

3	4	6	10	3	9	10	7	7	1	m_{1}
2	8	6	2	10	10	2	9	5	6	m_{2}
2	9	4	4	7	7	2	3	6	7	m_{3}
6	1	3	3	9	3	8	10	10	1	m_{4}
3	7	10	3	2	8	6	9	10	2	m_{5}
7	10	3	4	9	10	10	8	6	1	m_{6}

- $\left(X_{1}, Y_{1}\right)$ does not appear in bootstrap samples 2,3 and 5 , thus

$$
\hat{Y}_{1}=\frac{1}{3}\left(m_{2}\left(X_{1}\right)+m_{3}\left(X_{1}\right)+m_{5}\left(X_{1}\right)\right) .
$$

- We do the same for all the observations $\Longrightarrow \hat{Y}_{2}, \ldots, \hat{Y}_{n}$.

Example

3	4	6	10	3	9	10	7	7	1	m_{1}
2	8	6	2	10	10	2	9	5	6	m_{2}
2	9	4	4	7	7	2	3	6	7	m_{3}
6	1	3	3	9	3	8	10	10	1	m_{4}
3	7	10	3	2	8	6	9	10	2	m_{5}
7	10	3	4	9	10	10	8	6	1	m_{6}

- $\left(X_{1}, Y_{1}\right)$ does not appear in bootstrap samples 2,3 and 5 , thus

$$
\hat{Y}_{1}=\frac{1}{3}\left(m_{2}\left(X_{1}\right)+m_{3}\left(X_{1}\right)+m_{5}\left(X_{1}\right)\right) .
$$

- We do the same for all the observations $\Longrightarrow \hat{Y}_{2}, \ldots, \hat{Y}_{n}$.
- We obtain the OOB quadratic risk:

$$
\frac{1}{n} \sum_{i=1}^{n}\left(\hat{Y}_{i}-Y_{i}\right)^{2}
$$

Example

- Spam dataset with mtry $=1$:

```
> forest2 <- randomForest(Y~}.,data=spam,mtry=1
> forest2
Call:
    randomForest(formula = Y ~ ., data = dapp, mtry = 1)
    Type of random forest: classification
        Number of trees: 500
No. of variables tried at each split: 1
            OOB estimate of error rate: 8.04%
Confusion matrix:
    0 1 class.error
01367 27 0.01936872
1 158 748 0.17439294
```


Example

- Spam dataset with mtry $=1$:

```
> forest2 <- randomForest(Y~.,data=spam,mtry=1)
> forest2
Call:
    randomForest(formula = Y ~ ., data = dapp, mtry = 1)
        Type of random forest: classification
        Number of trees: 500
No. of variables tried at each split: 1
        OOB estimate of error rate: 8.04%
Confusion matrix:
    0 1 class.error
01367 27 0.01936872
1 158 748 0.17439294
```


Conclusion

OOB misclassification error: 8.04% for $m t r y=1$ and 5.26% for $m t r y=7$.

Outline

1. Bagging

2. Random forests

The algorithm

OOB error

Variable importance
3. Bibliography

- Single trees are highly interpretable.
- Linear combinations of trees (random forests) loose this important features.
- Single trees are highly interpretable.
- Linear combinations of trees (random forests) loose this important features.
- There exists a score which measures importance of each inputs.
- As for OOB error, this score is based on the fact for some observations does not appear in bootstrap samples.
- Let $O O B_{k}$ denotes the $O O B$ sample of the k-th tree.
- Let $O O B_{k}$ denotes the $O O B$ sample of the k-th tree.
- Let $E_{O O B_{k}}$ the quadratic error of the k-th tree measured on $O O B_{k}$:

$$
E_{O O B_{k}}=\frac{1}{\left|O O B_{k}\right|} \sum_{i \in O O B_{k}}\left(T_{k}\left(X_{i}\right)-Y_{i}\right)^{2}
$$

- Let $O O B_{k}$ denotes the $O O B$ sample of the k-th tree.
- Let $E_{O O B_{k}}$ the quadratic error of the k-th tree measured on $O O B_{k}$:

$$
E_{O O B_{k}}=\frac{1}{\left|O O B_{k}\right|} \sum_{i \in O O B_{k}}\left(T_{k}\left(X_{i}\right)-Y_{i}\right)^{2}
$$

- Permute (randomly) the values of input j in $O O B_{k} \Longrightarrow O O B_{k}^{j}$
- Let $O O B_{k}$ denotes the $O O B$ sample of the k-th tree.
- Let $E_{O O B_{k}}$ the quadratic error of the k-th tree measured on $O O B_{k}$:

$$
E_{O O B_{k}}=\frac{1}{\left|O O B_{k}\right|} \sum_{i \in O O B_{k}}\left(T_{k}\left(X_{i}\right)-Y_{i}\right)^{2}
$$

- Permute (randomly) the values of input j in $O O B_{k} \Longrightarrow O O B_{k}^{j}$ and compute the quadratic error on this dataset:

$$
E_{O O B_{k}}^{j}=\frac{1}{\left|O O B_{k}^{j}\right|} \sum_{i \in O O B_{k}^{j}}\left(T_{k}\left(X_{i}^{j}\right)-Y_{i}\right)^{2}
$$

- Let $O O B_{k}$ denotes the $O O B$ sample of the k-th tree.
- Let $E_{O O B_{k}}$ the quadratic error of the k-th tree measured on $O O B_{k}$:

$$
E_{O O B_{k}}=\frac{1}{\left|O O B_{k}\right|} \sum_{i \in O O B_{k}}\left(T_{k}\left(X_{i}\right)-Y_{i}\right)^{2}
$$

- Permute (randomly) the values of input j in $O O B_{k} \Longrightarrow O O B_{k}^{j}$ and compute the quadratic error on this dataset:

$$
E_{O O B_{k}}^{j}=\frac{1}{\left|O O B_{k}^{j}\right|} \sum_{i \in O O B_{k}^{j}}\left(T_{k}\left(X_{i}^{j}\right)-Y_{i}\right)^{2}
$$

Definition

The variable importance score for the j variable is defined by

$$
\operatorname{Imp}\left(X_{j}\right)=\frac{1}{B} \sum_{k=1}^{B}\left(E_{O O B_{k}}^{j}-E_{O O B_{k}}\right)
$$

Example

- It is easy to obtain variable importance score with randomForest

```
> imp <- importance(forest1)
> imp1 <- sort(imp,decreasing=TRUE)
> ord <- order(imp,decreasing=TRUE)
> ord
    [1] 52 53 55 7 7 56 16 21 25 57 5
[26] 17 10 10 28 42 49 35 1 36 39 13 54 1, 9
[51] 40 40 4 41 34 32 38 47
> barplot(imp1,beside=TRUE)
```


Comparison - spam dataset

- We make a comparison between some statistical learning algorithms on the spam dataset.

Comparison - spam dataset

- We make a comparison between some statistical learning algorithms on the spam dataset.
- To do that, we split the data into a
- a training set of size 2300 to fit and calibrate the models;
- a test set of size 2301 to estimate misclassification error of each model

$$
L_{n}(\hat{g})=\frac{1}{n_{\text {test }}} \sum_{i \in \mathcal{D}_{\text {test }}} \mathbf{1}_{\hat{\mathrm{g}}}\left(X_{i}\right) \neq Y_{i} .
$$

Method	M. error
Random Forest	0.050
Adaboost	0.052
Logitboost	0.048
k-NN	0.200
Tree	0.100

Method	M. error
Random Forest	0.050
Adaboost	0.052
Logitboost	0.048
k-NN	0.200
Tree	0.100

- Exercise 5-IML3

Outline

1. Bagging

2. Random forests

The algorithm
OOB error
Variable importance
3. Bibliography

References i

Breiman, L. (1996).
Bagging predictors.
Machine Learning, 26(2):123-140.
Genuer, R. (2010).
Forêts aléatoires : aspects théoriques, sélection de variables et applications.
PhD thesis, Université Paris XI.

Test - Instructions

- Document allowed: 1 sheet A4 format (single sided). No calculators, no laptops, no tablets, no mobile phone...
- Questions using the sign \& may have one or several correct answers. Other questions have a single correct answer.
- Only the last sheet (answer sheet page 9) is to be returned. You can keep all the other pages.
- Squares corresponding to good answers have to be colored with a black pen. Cross or circle marks are not sufficient! It is not possible to correct (once a square has been colored).

Scoring process

- No answer to one question $\Longrightarrow 0$ point for the question.
- Questions with a single correct answer: positive score for a good answer, negative score for a bad answer.
- Questions with several correct answers (sign \&): positive score for each good answer, negative or null score for each bad answer.

Mistake in exercise 1

- Many question in the exercices, they are not in the same order.
- Be careful: Exercise 1 should start with: We consider the following tibbles:

```
df1
# A tibble ...
df2
# A tibble ...
```

- But in some subjects, these tibbles could be presented:
- Between Question 1 and Question 2
- Between Question 2 and Question 3
- After Question 3

Solution

You have to find the tibbles df1 and df2 before answering to Question 1, Question 2 and Question 3.

- Find a dataset for a supervised learning problem (explain one variable by other variables). This dataset should contain at least 800 individuals and 30 variables (continuous or categorical).
- Descriptive part: present data (individuals and variables) and use efficient R tools (dplyr, ggplot...) for data manipulation and visualization.
\Longrightarrow not a list of graph or summaries! You have to comment each graph and statistical summaries.

Machine learning part

- Identify the practical problem;
- Translate the practical problem into a mathematical problem (Y, X, loss function, risk...).
- Propose and explain many machine learning algorithms ($k-n n$, linear/logistic, ridge, lasso, tree, random forest...)
- Define a way to compare these algorithms (validation hold out, cross validation...).
- Be careful: you have also to select parameters for each algorithms... You can look at exercise 6 of the third tutorial.
- Conclusion: choice of the best method and analysis of its performances.
- Deadline: December, 15th (11:59 pm).
- Each group should provide a notebook (.rmd file) and put on blackboard (you will receive instructions):
- the dataset (.txt, .csv)
- the rmd file and the html output file (with figures, R commands, R output...)
- Be careful (again): I will test your codes by running all the chunks of the notebook (the notebook should be complete!), in case of problem with some chunks, you will be penalized.

Conclusion

- More than an Introduction to machine learning.
- Propose a solid mathematical framework to make machine learning.

Conclusion

- More than an Introduction to machine learning.
- Propose a solid mathematical framework to make machine learning.
- You now have the tools to understand more complex algorithms: SVM, gradient boosting...

Conclusion

- More than an Introduction to machine learning.
- Propose a solid mathematical framework to make machine learning.
- You now have the tools to understand more complex algorithms: SVM, gradient boosting...
- ... just an introduction (15hours...): other lectures on these topics.

Conclusion

- More than an Introduction to machine learning.
- Propose a solid mathematical framework to make machine learning.
- You now have the tools to understand more complex algorithms: SVM, gradient boosting...
- ... just an introduction (15hours...): other lectures on these topics.
- Try to avoid the june exam session!

Conclusion

- More than an Introduction to machine learning.
- Propose a solid mathematical framework to make machine learning.
- You now have the tools to understand more complex algorithms: SVM, gradient boosting...
- ... just an introduction (15hours...): other lectures on these topics.
- Try to avoid the june exam session!

THANK YOU

