Multiple choice test Jan. 29th, 2019

Exam duration: 2 hours.

- Document allowed: 1 sheet A4 format (both sides). No calculators, no laptops, no tablets, no mobile phone...
- The test contains 7 exercises with 24 questions. Exercises 1-2-3 refer to the "R for data science" lecture and exercises 4-5-6-7 to the "Introduction to machine learning" lecture.
- Questions using the sign \clubsuit may have one or several correct answers. Other questions have a single correct answer.
- Only the last sheet (answer sheet page 9) is to be returned. You can keep all the other pages.
- Squares corresponding to good answers have to be colored with a black pen. Cross or circle marks are not sufficient! It is not possible to correct (once a square has been colored).
- The scoring process is as follows:
 - No answer to one question $\implies 0$ point for the question.
 - Questions with a single correct answer: positive score for a good answer, negative score for a bad answer.
 - Questions with several correct answers (sign \clubsuit): positive score for each good answer, negative score for each bad answer.

Exercise 1. This exercise deals with data importation and data merging.Question 1 File data1.txt (saved in the working directory of R) contains the following dataset

name;size;age
John;174;32
Peter;?;28
Mary;165.5;NA
Steve;173;?

Among the following commands, which one provides the following output.

```
> data1
    name size age
1 John 174.0 32
2 Peter NA 28
3 Mary 165.5 NA
4 Steve 173.0 NA
```

```
A data1 <- read.table("data1.txt",sep=";",header=TRUE,na.strings=c(" "))
B data1 <- read.table("data1.txt",sep=";",header=FALSE,na.strings=c("?","NA"))
C data1 <- read.table("data1.txt")
data1 <- read.table("data1.txt",sep=";",header=TRUE,na.strings=c("?","NA"))
E data1 <- read.table("data1.txt",sep=";",header=TRUE,na.strings=c("?","NA"))
F None of these answers are correct.</pre>
```

We assume that the following dataset has also been imported.

> data2 name1 weight 1 John 75 2 Mary 68 3 Fred 42

So, From now on, we have two datasets in this exercise: data1 and data2.

Question 2 Among the following commands, which one provides the following output.

```
name size age weight
1 John 174.0 32 75
2 Mary 165.5 NA 68
```

inner_join(data1,data2,by=c("name"="name1"))

B inner_join(data1,data2,by=c("name1"="name"))

C full_join(data1,data2,by=c("name"="name1"))

D full_join(data1,data2,by=c("name1"="name"))

E None of these answers are correct.

Question 3 Among the following commands, which one provides the following output.

name size age weight 1 John 174.0 32 75 2 Peter NA 28 NA 3 Mary 165.5 NA 68 4 Steve 173.0 NA NA 5 Fred NA NA 42

A full_join(data1,data2,by=c("name1"="name"))

B inner_join(data1,data2,by=c("name"="name1"))

C inner_join(data1,data2,by=c("name1"="name"))

full_join(data1,data2,by=c("name"="name1"))

E None of these answers are correct.

Exercise 2. This exercise is about dplyr package. Question 4 A Among the following sentences, which ones are correct?

- A mutate verb allows to filter individuals in a dataframe.
 - mutate verb allows to create variables in a dataframe.
 - **arrange** verb allows to reorder individuals according to the values of a variable.
- D select verb allows to filter individuals in a dataframe.
- **E arrange** verb allows to create variables in a dataframe.
- **group_by** verb allows to apply operations for group of individuals.
- G None of these answers are correct.

We now consider the **iris** dataset presented in the lecture. For simplicity, we will only consider the 5 individuals presented below.

>	iris1				
#	A tibble: 5 x 5				
	${\tt Sepal.Length}$	Sepal.Width	${\tt Petal.Length}$	Petal.Width	Species
*	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>
1	4.7	3.2	1.3	0.2	setosa
2	4.9	2.4	3.3	1	versicolor
3	5.7	2.5	5	2	virginica
4	4.6	3.1	1.5	0.2	setosa
5	5.1	2.5	3	1.1	versicolor

When running the following code Question 5

iris1 %>% summarize(PL=mean(Petal.Length))

the output is

A 5 B 2.74 2.82D 0.9 **E** None of these answers are correct.

Question 6 When running the following code

iris1 %>% group_by(Species) %>% summarize(M=mean(Petal.Width)) %>% arrange(desc(M))

the output is

the output is

A 2.82	D Species M
B Species M	<fct> <dbl></dbl></fct>
<fct> <dbl></dbl></fct>	1 virginica 5
1 setosa 0.2	2 versicolor 3.15
2 versicolor 1.05	3 setosa 1.4
Species M	E Species M
<fct> <dbl></dbl></fct>	<fct> <dbl></dbl></fct>
1 virginica 2	1 setosa 1.4
2 versicolor 1.05	2 versicolor 3.15
3 setosa 0.2	3 virginica 5 F None of these answers are correct.

Question 7 When running the following code

```
iris1 %>% summarize(M=mean(Petal.Width)) %>% group_by(Species)
```

```
D Species M
A 2.82
                                             <fct> <dbl>
B Species M
                                             1 virginica 5
   <fct> <dbl>
                                             2 versicolor 3.15
   1 virginica 2
                                             3 setosa 1.4
   2 versicolor 1.05
   3 setosa 0.2
                                          E Species M
                                             <fct> <dbl>
C Species M
                                             1 setosa 1.4
   <fct> <dbl>
                                             2 versicolor 3.15
   1 setosa 0.2
                                             3 virginica 5
   2 versicolor 1.05
   3 virginica 2
```

None of these answers are correct.

Petal.Length Petal.Width <dbl> <dbl> 1 1.3 0.2 2 3.3 1 3 5 2 4 1.5 0.2 5 3 1.1</dbl></dbl>	
iris1 %>% select(3:4)	$\overline{\mathrm{E}}$ iris1 %>% slice(Petal)
<pre>B iris1 %>% filter(3:4)</pre>	iris1[,3:4]
iris1 %>% select(contains("Pe	(G) None of these answers are correct.
D iris1 %>% mutate(contains("Pe	tal"))
Exercise 3. This exercise is ab	out ggplot2 package.
For these questions on ggplot we con	nsider the full iris dataset available on $R.$ For each question of
this exercice, only one answer is corr	ect.
Question 9 Among the following	; commands, which one provides Figure 1 page 5.
A ggplot(iris)+aes(x=Petal.Leng	<pre>sth)+geom_bar(bins=10)</pre>
ggplot(iris)+aes(x=Petal.Leng	th)+geom_histogram(bins=10)
C ggplot(iris)+geom_histogram()	=Petal.length,bins=10)
\square ggplot(iris)+geom_histogram()	r=Petal.length,bins=10)
E ggplot(iris)+aes(x=Petal.Leng	yth,y=count)+geom_histogram(bins=10)
Question 10 Among the following	ng commands, which one provides Figure 2 page 5.
A ggplot(iris)+geom_boxplot(x=S	Species,y=Petal.Length)
B ggplot(iris)+group_by(x=Speci	.es,y=Petal.Length)+geom_boxplot()
C ggplot(iris)+aes(x=Species,y=	Petal.Length)+geom_bar()
D ggplot(iris)+aes(y=Petal.Leng	<pre>gth)+geom_boxplot(x=Species)</pre>
<pre>ggplot(iris)+geom_boxplot()+a</pre>	<pre>les(x=Species,y=Petal.Length)</pre>
Question 11 Among the following	ng commands, which one provides Figure 3 page 5.
A ggplot(iris)+aes(x=Petal.Leng	gth,y=Petal.Width)+geom_point(shape=Species,size=3)
B ggplot(iris)+aes(x=Petal.Leng	yth,y=Petal.Width,color=Species)+geom_point(size=3)
C ggplot(iris)+aes(x=Petal.Leng	yth,y=Petal.Width)+geom_point(size=3)
D ggplot(iris)+aes(x=Petal.Leng	gth,y=Petal.Width)+group_by(Species)+geom_point(size=3)
ggplot(iris)+aes(y=Petal.Widt	h,x=Petal.Length,shape=Species)+geom_point(size=3)
Question 12 Among the following	ng commands, which one provides Figure 4 page 5.
A ggplot(iris)+aes(x=Sepal.Leng geom_smooth(method="lm")+grou	<pre>gth,y=Sepal.Width)+geom_point(size=2)+ up_by(Species)</pre>
B ggplot(iris)+aes(x=Sepal.Leng geom_smooth(method="lm")	<pre>gth,y=Sepal.Width,facet=Species)+geom_point(size=2)+</pre>
ggplot(iris)+aes(x=Sepal.Leng	th,y=Sepal.Width)+geom_point(size=2)+

Question 8 ♣ Among the following commands, which ones provide the following output.

E ggplot(iris) %>% group_by(Species)+aes(x=Sepal.Length,y=Sepal.Width)+ geom_point(size=2)+geom_smooth(method="lm")

geom_smooth(method="lm")+facet_wrap(~Species)

Figure 1: Question 9.

Figure 2: Question 10.

Figure 3: Question 11.

Figure 4: Question 12.

Exercise 4. This exercise deals with general questions of machine learning. **Question 13** Among the following functions, which ones may be used as cost functions for a regression problem.

 $\begin{array}{c} \begin{array}{c} \ell(y,y') = (y-y')^2. \\ \hline \\ \end{array} \\ \begin{array}{c} \ell(y,y') = y - y'. \\ \hline \\ \ell(y,y') = |y-y'|. \\ \hline \\ \end{array} \\ \begin{array}{c} \ell(y,y') = y + y'. \end{array} \end{array}$

 $\ell(y, y') = \frac{1}{2}(y - y')^2.$ F $\ell(y, y') = yy'.$ G None of these answers are correct.

Question 14 For a machine *m* we denote by $\mathcal{R}(m) = \mathbf{E}[(Y - m(X))^2]$ its quadratic risk. Let m^* denote the optimal machine for the quadratic risk. Among the following answers, which one is correct.

Question 15 \clubsuit Let f_k and f_h denote the k-nearest neighbor and the kernel estimate with bandwidth h for a regression problem. Among the following answers, which ones are correct.

Question 16 \clubsuit Let *g* be a classification rule which suffers from overfitting. Among the following choices, which ones are correct.

A Observations in a test dataset are very well predicted by g.
 C g has a large bias and a small variance.
 g has a small bias and a large variance.
 E g has a small bias and a small variance.
 E g has a small bias and a small variance.
 F None of these answers are correct.

Exercise 5. This exercises is about penalized regressions.

In this exercise we consider a n i.i.d. sample $(X_1, Y_1), \ldots, (X_n, Y_n)$ where $X_i = (X_{i1}, \ldots, X_{ip})$ takes values in \mathbb{R}^p (with p large) and Y_i in \mathbb{R} . We consider the linear model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \ldots + \beta_p X_{ip} + \varepsilon_i$$

Question 17 ♣ Among the following answers, which ones are correct.

- B Penalized algorithms allow to reduce the bias of the least squares estimates.
- Bias of ridge estimates is larger than the bias of the least squares estimate.

for large values of p.

Ridge and lasso methods are widely used

- C Ridge/lasso estimates always overperform least square estimates.
- **F** None of these answers are correct.

Question 18 Let $\lambda \ge 0$. Lasso estimates are calculated by minimizing the least square criterion penalized by

 $\begin{array}{||c||} & \lambda \sum_{j=1}^{p} |\beta_j| \\ \hline & B & \lambda \sum_{j=1}^{p} \sqrt{\beta_j} \\ \hline & C & \lambda \sum_{j=1}^{p} \log(\beta_j^2) \end{array}$

 $\begin{array}{c} \boxed{\mathbf{D}} \ \lambda \sum_{j=1}^{p} \beta_j^2 \\ \boxed{\mathbf{E}} \ \lambda \sum_{i=1}^{p} \log(|\beta_i|) \end{array}$

F None of these answers are correct.

Question 19 We consider lasso estimates defined by the (correct) penalty term proposed at the previous question. Among the following choices, which ones are correct.

- $\fbox{A} Lasso estimates are closed to 0 for very small values of <math>\lambda$.
- B Lasso estimates are closed to least squares estimates for very large values of λ .
- Lasso estimates are closed to 0 for large values of λ .

Question 20 \clubsuit Among the following answers, which ones are correct.

- Function **glmnet** allows to compute lasso estimates.
- B Function **glmnet** allows to select the λ parameter in lasso regression.
- <u>C</u> Function **glmnet** allows to fit regression trees.
 - Function **cv.glmnet** allows to select the λ parameter in lasso regression.

Exercise 6. This exercises is about trees.

rpart function has been used to fit a sequence of tree for a binary classification problem. This sequence is assigned in the R object **tree**. **plotcp** function provides the following output:

>	printcp(tre	e)8	cptable		
	CP nspl	lit	rel error	xerror	xstd
1	0.2941176	0	1.000000	1.00000	0.053870
2	0.1225490	1	0.705882	0.71569	0.049838
3	0.0931373	3	0.460784	0.49020	0.043844
4	0.0637255	4	0.367647	0.43627	0.041928
5	0.0122549	5	0.303922	0.34314	0.038034
6	0.0098039	7	0.279412	0.35532	0.038034
7	0.0049020	9	0.259804	0.36275	0.038923
8	0.0040107	25	0.181373	0.38804	0.038260
9	0.0036765	41	0.112745	0.39216	0.040184
10	0.0032680	49	0.083333	0.40196	0.040586
11	0.0024510	52	0.073529	0.41176	0.040980
12	2 0.0001000	82	0.000000	0.43137	0.041742

We consider 2 trees defined by:

> tree1 <- prune(tree,cp=0.1225490)
> tree2 <- prune(tree,cp=0.0001000)</pre>

Question 21 & Among the following choices, which ones are correct.

- tree2 overfits.
- [E] tree2 has a large bias.
- **F** None of these answers are correct.

Question 22 Among the following trees, which one is the best (according to the pruning strategy proposed in the course).

 A
 prune(tree, cp=0.2941176)

 B
 prune(tree, cp=0.0024510)

 C
 prune(tree, cp=0.34314)

D prune(tree,cp=0.303922)

prune(tree,cp=0.0122549)

F prune(tree,cp=0.0001000)

G None of these answers are correct.

Lasso estimates are closed to least squares estimates for very small values of λ.
E We always have to choose λ as large as

- possible.
- **F** None of these answers are correct.
- E Option lambda in glmnet function allows to specify if we want to make ridge or lasso regression.
- Option alpha in glmnet function allows to specify if we want to make ridge or lasso regression.
- G None of these answers are correct.

Exercise 7.

In this exercise we consider a n i.i.d. sample $(X_1, Y_1), \ldots, (X_n, Y_n)$ with the same distribution as (X, Y). We assume that X takes values in \mathbb{R} and Y in $\{0, 1\}$. Let g be a classification rule and $L(g) = \mathbf{P}(g(X) \neq Y)$ be its error probability. We also denote by g^* the Bayes rule.

Question 23 \clubsuit Let $x \in \mathbb{R}$. Among the following choices, which ones are correct.

Question 24 \clubsuit Moreover, we assume that X has standard normal distribution $\mathcal{N}(0,1)$ and that, for $x \in \mathbb{R}$, the conditional distribution of Y|X = x is

- a Bernoulli distribution $\mathcal{B}(0.75)$ if $x \ge 0$;
- a Bernoulli distribution $\mathcal{B}(0.20)$ if x < 0;

Among the following choices, which ones are correct.

	Firstname and lastname:
Answer sheet:	

Answers must be given exclusively on this sheet: answers given on the other sheets will be ignored.

QUESTION	1:	A B C E F
QUESTION	2:	BCDE
QUESTION	3:	A B C E
QUESTION	4:	A D E G
QUESTION	5:	A B D E
QUESTION	6:	A B D E F
QUESTION	7:	A B C D E
QUESTION	8:	B D E G
QUESTION	9:	A C D E
QUESTION	10:	ABCD
QUESTION	11:	ABCD
QUESTION	12:	A B D E
QUESTION	13:	B D F G
QUESTION	14:	A B D
QUESTION	15:	BCEE
QUESTION	16:	A C E F
QUESTION	17:	BCF
QUESTION	18:	B C D E F
QUESTION	19:	A B E F
QUESTION	20:	BCEEG
QUESTION	21:	A C E F
QUESTION	22:	A B C D F G
QUESTION	23:	
QUESTION	24:	BCEEFHIJK